[1] Wayne XZ,Kun Z,Junyi L, et at. A survey of
large language models[EB/OL].(2024-10-13)[2025-01-20]. https://arxiv.org/abs/2303.18223.
[2] Gray M,Xu J,Tong W,et al.Classifying free
texts into predefined sections using AI in regulatory documents:a case study with drug labeling documents[J].Chem Res Toxicol,2023,36(8):1290-1299.
[3] Zachary Brennan.FDA to
modernize drug surveillance internally with use of AI[EB/OL].(2024-02-05)[2025-01-20].https://endpts.com/fda-to-modernize-drug-surveillance-internally-with-use-of-ai/.
[4] Wu L, GrayYM, Dang O, et al. RxBERT: enhancing drug labeling
text mining and analysis with AI language modeling[J].Exp Biol Med,2023,248(21):1937-1943.
[5] FDA.Considerations for the Use
of Artificial Intelligence To Support Regulatory Decision-Making for Drug and Biological Products[EB/OL].(2025-01-06)[2025-01-20].https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological.
[6] Fu L, Jia G, Liu Z, et al. The applications
and advances of artificial intelligence in drug regulation:a global perspective[J].Acta Pharmaceutica Sinica B,2024,15(2):234-249.
[7] EMA.Guiding Principles Use
Large Language Models Regulatory Science Medicines Regulatory Activities [EB/OL].(2024-08-29)[2025-01-20].https://www.ema.europa.eu/en/documents/other/guiding-principles-use-large-language-models-regulatory-science-medicines-regulatory-activities_en.pdf.
[8] 国家药品监督管理局.国家药品监督管理局关于加快推进药品智慧监管的行动计划[EB/OL].(2019-05-24)[2025-01-20].https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjzh/20190524175201644.html.
[9] 国家药品监督管理局.国家药监局综合司关于印发药品监管人工智能典型应用场景清单的通知[EB/OL].(2024-06-18)[2025-01-20].https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjzh/20240618144318144.html.
[10] Daya G,Dejian Y,Haowei Z,et al. DeepSeek-R1: incentivizing reasoning capability in LLMs
via reinforcement learning[EB/OL].(2025-01-22)[2025-01-22].https://arxiv.org/abs/2501.12948.
[11] Perry TS.Move over,Moore's law. Make way for Huang's law[J].IEEE Spectrum,2018, 55(5):7.
[12] Zhang C,Zhong H,Zhang K, et al. Harnessing diversity for important data selection in
pretraining large language models[EB/OL].(2024-10-05)[2025-01-20].https://arxiv.org/abs/2409.16986.
[13] Patil RS,Kulkarni SB,Gaikwad VL. Artificial
intelligence in pharmaceutical regulatory affairs[J].Drug Discovery Today,2023,28(9):103700.
[14] Lialin V, Deshpande V, Rumshisky A. Scaling
down to scale up:a guide to parameter-efficient fine-tuning[EB/OL].(2024-11-22)[2025-01-20].https://arxiv.org/abs/2303.15647.
[15] 国家信息中心.国家信息中心发布《人工智能行业应用建设发展参考架构》[EB/OL].(2024-12-06) [2025-01-20].http://
www.sic.gov.cn/sic/83/260/1206/20241206080139597920003_pc.html.
[16] 刘伟,谭文辉,刘欣.人机环境系统智能:超越人机融合[M].北京:科学出版社,2004:395.
[17] Farquhar S, Kossen J, Kuhn L, et al. Detecting hallucinations in large language models using
semantic entropy[J]. Nature, 2024, 630:625-630.
[18] Hsieh CY, Li CL, Ye CK, et al. Distilling step-by-step!outperforming larger language models with less
training data and smaller model sizes[C].Findings of the Association for Computational Linguistics.Toronto:Association for Computational Linguistics,2023:8003-8017.
[19] Kirchenbauer J, Geiping J, Wen Y, et al. A watermark for large language models[C].Proceedings of Machine Learning
Research.Honolulu:JMLR.org,2023:17061-17084.
|