[1] Grégoire C, Coutinho OB, Caimi PF, et al. Chimeric antigen receptor T-cell therapy for haematological malignancies: insights from fundamental and translational research to bedside
practice[J].Br J Haematol,2024,205(5):1699-1713.
[2] Chang JF, Wellhausen N, Engel NW, et al. Identification of core techniques that enhance genome
editing of human T cells expressing synthetic antigen receptors[J].Cancer Immunol Res,2024,12(9):1136-1146.
[3] Singh N, Shi J, June CH, et al. Genome-editing technologies in adoptive T cell immunotherapy for Cancer[J].Curr Hematol Malig Rep,2017,12(6):522-529.
[4] Posey AD, Young RM, June CH. Future
perspectives on engineered T cells for cancer[J]. Trends Cancer,2024,10(8):687-695.
[5] Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells[J].Nature,2018,558(7709):307-312.
[6] Dimitri AJ, Baxter AE, Chen GM, et al. TET2 regulates early and late transitions in exhausted CD8+ T cell differentiation and limits CAR T cell function[J].Sci Adv,2024,10(46):937-951.
[7] Arunachalam AK, Grégoire C, Coutinho OB, et al. Advancing CAR T-cell therapies: preclinical insights and clinical translation for hematological
malignancies[J].Blood Rev,2024,68:101-112.
[8] Depil S, Duchateau P, Grupp SA, et al. “Off-the-shelf” allogeneic CAR T-cells: development and challenges[J].Nat Rev Drug Discov,2020,19(3):185-199.
[9] Bailey SR, Vatsa S, Larson RC, et al. Blockade or deletion of IFNγ reduces macrophage activation
without compromising CAR T-cell function in hematologic malignancies[J].Blood Cancer Discov,2022,3(2):136-153.
[10] Kim MY, Yu KR, Kenderian SS, et
al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T
cell immunotherapy for acute myeloid leukemia[J].Cell,2018,173(6):1439-1453.
[11] Ottaviano G, Georgiadis C, Gkazi SA, et al. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with
refractory B cell leukemia[J].Sci Transl Med,2022,14(668):301-310.
[12] Wellhausen N, Agarwal S, Rommel PC, et al. Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy[J].Curr Opin Immunol,2022,74:76-84.
[13] Diorio C, Murray R, Naniong M, et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL[J].Blood,2022,140(6):619-629.
[14] Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR
genome editing technologies[J].Cell,2024,187(5):1076-1100.
[15] Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons
infected with HIV[J].N Engl J Med,2014,370(10):901-910.
[16] Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer[J].Science,2020,367(6481):7365-7367.
[17] Finck AV, Blanchard T, Roselle CP, et al. Engineered cellular immunotherapies in cancer and beyond[J].Nat Med,2022,28(4):678-689.
[18] Osborn MJ, Webber BR, Knipping F, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases[J].Mol Ther,2016,24(3):570-581.
[19] Zhang J, Hu Y, Yang J, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL[J].Nature,2022,609(7926):369-374.
[20] Wills CA, Drago D, Pietrusko RG. Clinical
holds for cell and gene therapy trials: Risks, impact, and lessons learned[J].Mol Ther Methods Clin Dev,2023,31:101-125.
[21] Food and Drug Administration.Human gene therapy products incorporating human genome editing[EB/OL].(2024-01)[2024-12-13].https://www.fda.gov/media/156894/download.
[22] Food and Drug Administration.Considerations for the Development of Chimeric Antigen Receptor T
cell Products[EB/OL].(2024-01)[2024-12-13].https://www.fda.gov/media/156896/download.
[23] 国家药品监督管理局药品审评中心.国家药监局药审中心关于发布《免疫细胞治疗产品药学研究与评价技术指导原则(试行)》的通告(2022年第30号)[EB/OL].(2022-05-31)[2024-12-13].https://www.cde.org.cn/main/news/viewInfoCommon/0584963a84e01bb4d83022f559d22144.
[24] 国家药品监督管理局药品审评中心.国家药监局药审中心关于发布《体外基因修饰系统药学研究与评价技术指导原则(试行)》的通告(2022年第29号)[EB/OL].(2022-05-31)[2024-12-13].https://www.cde.org.cn/main/news/viewInfoCommon/6f14372f020446361601bb074a09410d.
[25] Jadlowsky JK, Chang JF, Spencer DH, et al. Regulatory considerations for genome-edited T-cell therapies[J].Cancer Immunol Res,2024,12(9):1132-1135.
[26] Ren J, Liu X, Fang C, et al. Multiplex genome
editing to generate universal CAR T cells resistant to PD1 inhibition[J].Clin Cancer Res,2017,23(9):2255-2266.
[27] Ren J, Zhang X, Liu X, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation[J].Oncotarget,2017,8(10):17002-17011.
[28] Hu Y, Zhou Y, Zhang M, et al. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J].Clin Cancer Res,2021,27(10):2764-2772.
[29] 徐隆昌.外周血来源的通用型CAR-T细胞产品研究进展和审评考虑[J].中国新药杂志,2022,31(21):2159-2164.
[30] Abou-El-Enein M, Elsallab M, Feldman SA, et al. Scalable
manufacturing of CAR T cells for cancer immunotherapy[J].Blood Cancer Discov,2021,2(5):408-422.
[31] Tsuchida CA, Brandes N, Bueno R, et al. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells[J].Cell,2023,186(21):4567-4582.
[32] Perales MA, Kebriaei P, Kean LS, et al. Building a safer and faster CAR: seatbelts, airbags, and CRISPR[J].Biol Blood Marrow Transplant,2018,24(1):27-31.
[33] 尹慧芳,卢加琪,张景辰,等.细胞治疗产品中关键原材料风险控制策略的审评考虑[J]. 中国肿瘤生物治疗杂志,2024,31(10):943-950.
[34] Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage
by CRISPR-Cas nucleases[J].Nat Biotechnol,2015,33(2):187-197.
[35] Tieu V, Sotillo E, Bjelajac JR, et al. A versatile CRISPR-Cas13d platform
for multiplexed transcriptomic regulation and metabolic engineering in primary
human T cells[J].Cell,2024,187(5):1278-1295.
[36] Food and Drug Administration.FDA Requires Boxed Warning for T cell Malignancies Following
Treatment with BCMA-Directed or CD19-Directed Autologous Chimeric Antigen Receptor (CAR) T cell Immunotherapies[EB/OL].(2024-04-18)[2024-12-13]. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-requires-boxed-warning-t-cell-malignancies-following-treatment-bcma-directed-or-cd19-directed.
[37] Hsieh EM, Myers RM, Yates B, et al. Low rate of subsequent malignant neoplasms after CD19 CAR T-cell therapy[J].Blood Adv,2022,6(17):5222-5226.
[38] Steffin DHM, Muhsen IN, Hill LC, et al. Long-term follow-up for the development of subsequent malignancies in patients
treated with genetically modified IECs[J].Blood,2022,140(1):16-24.
[39] Wang Z, Li N, Feng K, et al. Phase I study of
CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors[J].Cell Mol Immunol,2021,18(9):2188-2198.
[40] Sheih A, Voillet V, Hanafi LA, et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy[J].Nat Commun,2020,11(1):219-232.
[41] Nobles CL, Sherrill-Mix S, Everett JK, et
al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic
modification by vector integration[J].J Clin Invest,2020,130(2):673-685.
[42] Shifrut E, Carnevale J, Tobin V, et al. Genome-wide CRISPR screens in primary human t cells reveal key regulators
of immune function[J].Cell,2018,175(7):1958-1971.
|