|
[1] Zaed I, Cardia A, Stefini R. From
Reparative Surgery to Regenerative Surgery: State of the Art of
Porous Hydroxyapatite in Cranioplasty[J].Int J Mol Sci, 2022,23(10):5434-5442.
[2] Ulmeanu M-E, Mateş I M, Doicin C-V, et al. Bespoke Implants for Cranial
Reconstructions: Preoperative to Postoperative Surgery
Management System[J].Bioengineering, 2023,10(5):544-568.
[3] Jegadeesan J T, Baldia M, Basu B. Next-generation personalized cranioplasty treatment[J].Acta Biomater, 2022,154:63-82.
[4] Zambon G, Nuzzi D, Segna A.
Osteointegration of porous hydroxyapatite ceramic implant for pediatric
cranioplasty: a pediatric case report with 12 years of
follow-up[J].Prog Neurobiol, 2024,8(1-4):15-21.
[5] Su Q, Qiao Y, Xiao Y, et al. Research progress of 3D printed poly (ether ether ketone) in the reconstruction
of craniomaxillofacial bone defects[J].Front Bioeng Biotechnol, 2023,11:1259696.
[6] Kantaros A, Petrescu F, Abdoli H, et al. Additive Manufacturing for Surgical Planning and Education: A Review[J].Appl Sci, 2024,14(6):2550-2572.
[7] Moiduddin K, Mian S H, Alkhalefah H, et al. Customized Cost-Effective
Cranioplasty for Large Asymmetrical Defects[J].Processes, 2023,11(6):1760-1780.
[8] Policicchio D, Casu G, Dipellegrini G, et al. Comparison of two different titanium cranioplasty methods: Custom-made titanium prostheses versus precurved titanium mesh[J].Surg Neurol Int , 2020,11:148-158.
[9] Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery[J]. Ann Maxillofac Surg, 2014,4(1):9-19.
[10] Alkhaibary A, Alharbi A, Alnefaie N, et al. Cranioplasty: A Comprehensive Review
of the History, Materials, Surgical Aspects, and Complications[J].World Neurosurg, 2020,139:445-452.
[11] Sarraf M, Rezvani Ghomi E, Alipour S, et al. A state-of-the-art review of the fabrication and characteristics of titanium and
its alloys for biomedical applications[J].Bio-Des Manuf, 2022,5(2):371-395.
[12] Davoodi E, Montazerian H, Mirhakimi A S, et al. Additively manufactured metallic biomaterials[J].Bioact Mater, 2022, 15: 214-249.
[13] Zeng L, Armstrong S, Zhu Y, et al. 3D-printed surfaces of titanium implant: the
fibroblasts response[J].Biomater Adv , 2025,166:214006.
[14] Marin E, Lanzutti A. Biomedical Applications of Titanium Alloys: A Comprehensive Review[J].Materials, 2023,17(1):114-156.
[15] He S, Zhu J, Jing Y, et al. Effect of 3D-Printed Porous Titanium Alloy Pore Structure on Bone Regeneration: A Review[J].Coatings, 2024,14(3):253-270.
[16] Feuerriegel G C. Managing
hardware-related metal artifacts in MRI: current and evolving
techniques[J].Skelet Radiol,2024(53):1737-1750.
[17] Delgado-Pujol E J. Porous beta titanium alloy coated with a therapeutic
biopolymeric composite to improve tribomechanical and biofunctional balance[J].Mater Chem Phys, 2023,300:127559.
[18] Niu Y, Chen L, Wu T. Recent Advances
in Bioengineering Bone Revascularization Based on Composite Materials
Comprising Hydroxyapatite[J].Int J Mol Sci, 2023,24(15):12492.
[19] Zaed I, Cardia A, Stefini R. From
Reparative Surgery to Regenerative Surgery: State of the Art of
Porous Hydroxyapatite in Cranioplasty[J].Int J Mol Sci, 2022, 23(10): 5434-5442.
[20] Radulescu D-E, Vasile O R, Andronescu E, et al. Latest Research of Doped
Hydroxyapatite for Bone Tissue Engineering[J].Int J Mol Sci, 2023, 24:13157.
[21] Ghasemi F, Jahani A, Moradi A, et al. Different Modification Methods of Poly Methyl Methacrylate
PMMA) Bone Cement for Orthopedic Surgery Applications[J].Arch Bone Jt Surg, 2023,11(8):485-492.
[22] Ramanathan S, Lin Y-C, Thirumurugan S, et
al. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone
Tissue Engineering[J].Polymers, 2024,16:367-390.
[23] Ku F-H. Water temperature for fabrication of autopolymerizing polymethyl
methacrylate (PMMA) interim fixed
restoration affects cytotoxicity and residual methyl methacrylate (MMA)[J].J Dent Sci , 2024,19:124-129.
[24] Csámer L, Csernátony Z, Novák L, et al. Custom-made 3D printing-based cranioplasty using a silicone mould and PMMA[J].Sci Rep, 2023,13(1):11985.
[25] Pérez Davila S, González Rodríguez L, Chiussi S, et al. How to Sterilize Polylactic Acid Based Medical Devices?[J].Polymers, 2021,13(13):2115-2133.
[26] Ma H, Suonan A, Zhou J, et al. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic
implantation[J].Arab J Chem, 2021,14(3):102977.
[27] Garnica-Bohórquez I, Güiza-Argüello V R, López-Gualdrón C I. Effect of Sterilization on the Dimensional and
Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition
Modeling[J].Polymers, 2023,15(15):3317-3336.
[28] Mbogori M, Vaish A, Vaishya R, et al. Poly-Ether-Ether-Ketone (PEEK) in orthopaedic practice- A current
concept review[J].J Orthop Rep, 2022,1(1):3-7.
[29] Luo C, Liu Y, Peng B, et al. PEEK for Oral
Applications: Recent Advances in Mechanical and Adhesive
Properties[J].Polymers, 2023,15(2):386-411.
[30] Genna S, Moretti P, Ponticelli G S, et al. Study on laser-assisted
joining of titanium (Ti6Al4V) to polyether ether ketone (PEEK) for Enhanced hybrid joints[J]. Opt Laser Technol , 2025, 186: 112681.
[31] Mian S H, Moiduddin K, Elseufy S M, et al. Adaptive Mechanism for Designing a Personalized Cranial
Implant and Its 3D Printing Using PEEK[J].Polymers, 2022, 14(6):1266-1294.
[32] Moiduddin K, Mian S H, Umer U, et al. Design, Analysis, and 3D Printing of a Patient-Specific Polyetheretherketone Implant for the Reconstruction of
Zygomatic Deformities[J].Polymers, 2023,15(4):886-903.
[33] Mian S H, Moiduddin K, Abdo B M A, et al. Modelling and evaluation of meshed implant for cranial
reconstruction[J].Int J Adv Manuf Technol, 2022,118:1967-1985.
[34] Kafle A, Luis E, Silwal R, et al. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA)[J].Polymers, 2021,13(18):3101-3138.
[35] 闵玥, 史新立. 我国增材制造个性化医疗器械上市前监管现状和挑战[J]. 中国药物评价, 2024, 41(2): 88-92.
[36] Jandyal A, Chaturvedi I, Wazir I, et al. 3D printing-A review of processes, materials and
applications in industry 4.0[J].Sustain Oper Comput, 2022,3:33-42.
[37] Fiume E, Coppola B, Montanaro L, et al. Vat-photopolymerization of ceramic materials: exploring current applications in advanced multidisciplinary fields[J].Front Mater , 2023,10:1242480.
[38] Zhai Y, Zhang H, Wang J, et al. Research progress of metal-based additive manufacturing in medical implants[J].Adv Mater Sci, 2023, 62:20230148.
[39] Liu K, Zhou Q, Zhang X, et al. Morphologies, mechanical and in vitro
behaviors of DLP-based 3D printed HA scaffolds with different structural
configurations[J].RSC Advances, 2023,13:20830.
[40] Atwal N, Bhatnagar D. Evaluating and Comparing Flexure Strength of Dental
Models Printed Using Fused Deposition Modelling, Digital Light Processing, and Stereolithography
Apparatus Printers[J].Cureus, 2024,16(2):e54312.
[41] Moiduddin K, Mian S H, Elseufy S M, et al. Polyether-Ether-Ketone (PEEK) and Its 3D-Printed Quantitate Assessment in Cranial Reconstruction[J].J Funct Biomater, 2023,14(8):429-452.
[42] Shanthar R, Chen K, Abeykoon C.
Powder‐Based Additive Manufacturing: A Critical Review of
Materials, Methods, Opportunities, and Challenges[J].Adv Eng Mater, 2023,25:2300375.
[43] Han W, Kong L, Xu M. Advances in
selective laser sintering of polymers[J].Int J Extrem Manuf, 2022,4(4):042002.
[44] Lanzutti A, Marin E. The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A
Comprehensive Review[J].Metals, 2024,14(8):886-927.
[45] González-Henríquez C M, Sarabia-Vallejos M A, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical
applications[J].Prog Polym Sci, 2019,94:57-116.
[46] Rajan K, Samykano M, Kadirgama K, et al. Fused deposition modeling: process, materials, parameters, properties, and
applications[J].Int J Adv Manuf Technol, 2022,120(3):1531-1570.
[47] Stansbury J W, Idacavage M J. 3D printing with polymers: Challenges among expanding options and opportunities[J].Int J, 2016,32(1):54-64.
[48] Ali H. Development of a large-scale multi-extrusion FDM printer, and its challenges[J].International Journal of Lightweight
Materials and Manufacture, 2023(6):198-213.
[49] Lakkala P. Additive
manufacturing technologies with emphasis on stereolithography 3D printing in
pharmaceutical and medical applications: A review[J].Int J Pharm, 2023,5:100159.
[50] Taormina G, Sciancalepore C, Messori M, et al. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends[J].J Appl Biomater Funct Mater, 2018,16(3):151-160.
[51] Cazin I, Ocepek M, Kecelj J, et al. Synthesis of Bio-Based Polyester
Resins for Vat Photopolymerization 3D Printing[J].Materials, 2024,17(8):1890-1903.
[52] Zhang M, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures[J].Nat Commun, 2022,13(1):3247-3260.
[53] Yao Y-C, Chou P-H, Lin H-H, et al. Outcome of Ti/PEEK Versus PEEK Cages
in Minimally Invasive Transforaminal Lumbar Interbody Fusion[J]. Glob Spine J, 2023, 13(2): 472-478.
[54] Ng WL, Goh GL, Goh GD, et al. Progress and Opportunities for Machine Learning in Materials
and Processes of Additive Manufacturing[J].Adv Mater, 2024,36(34):2310006.
|