• 中国核心期刊数据库收录期刊
  • 中文科技期刊数据库收录期刊
  • 中国期刊全文数据库收录期刊
  • 中国学术期刊综合评价数据库统计源期刊等

快速检索引用检索图表检索高级检索

中国医药导刊 ›› 2024, Vol. 26 ›› Issue (11): 1093-1097.

• 监管科学 • 上一篇    下一篇

大语言模型技术在医药临床研发中的应用

毛乡芸1ab, 毕伯竹2, 曹晨龙3, 姚晨45*, 李冠乔1ab*   

  1. 1.清华大学 万科公共卫生与健康学院a,健康中国研究院b,北京 100084;
    2.拜耳(中国)有限公司,北京 100020;3.勃林格殷格翰(中国)投资有限公司,上海 200100;
    4.北京大学第一医院,北京 100035;5.北京大学临床研究所,北京 100191
  • 收稿日期:2024-11-19 修回日期:2024-12-03 出版日期:2024-11-28 发布日期:2024-11-28
  • 基金资助:
    国家自然科学基金面上项目(72374119);北京市科技新星计划(20230484289)

The Application of Large Language Model Technology in Drug Clinical Research and Development

  1. 1.Vanke School of Public Healtha Institute for Healthy Chinab Tsinghua University Beijing 100084, China
    2. BayerChina Limited Beijing 100020, China 3. Boehringer IngelheimChina Limited Shanghai 200100, China
    4. Peking University First Hospital Beijing 100035, China
    5.Peking Univeristy Clinical Research Institute Beijing 100191, China
  • Received:2024-11-19 Revised:2024-12-03 Online:2024-11-28 Published:2024-11-28

摘要:

在现代医疗领域,提升临床研发和运营效率对加快药物开发速度和降低研发成本至关重要。人工智能领域的科技进步正在深刻改变医药研发的传统模式,尤其是大语言模型在临床研发中的应用,为这一过程提供了前所未有的支持。本研究深入探讨大语言模型在临床研发中的应用范围,包括优化临床试验设计、加强临床试验管理、满足以患者为中心的考量、提高数据处理效率以及加速药品审批与监管。其中,通过自然语言处理和机器学习相关技术,实现自动化任务,如填写病例报告表和生成监管文件,不仅减轻研究团队的负担,还加快从研究到上市的整个药物开发流程,显著提升了临床试验研究效率。然而,先进科技解决方案的落地实施仍面临挑战,例如患者隐私保护、技术的复杂性等。基于此,本研究提出在推动大语言模型在药物临床研发中的应用时,需要加强与监管部门的有效沟通,以项目成果、业务需求和患者福祉为导向,为大语言模型技术在未来临床研发的应用提供了重要的参考依据。


关键词: 大语言模型, 临床研发, 临床运营, 生物医药

Abstract:

In the modern medical field enhancing clinical research and operational efficiency is crucial for accelerating drug development and reducing research and development R&Dcosts. Technological advancements in artificial intelligence are profoundly changing the traditional models of pharmaceutical R&D with large language models in particular providing unprecedented support for this process. This study delves into the application of large language models in clinical R&D including optimizing clinical trial design enhancing clinical trial management addressing patient-centered considerations improving data processing efficiency and accelerating drug approval and regulation. By leveraging natural language processing and machine learning technologies tasks such as filling out case report forms and generating regulatory documents have been automated. This not only reduces the burden on teams but also expedites the entire drug development process from research to market improving the efficiency of clinical trial studies. However implementing these advanced high-tech solutions still faces challenges such as privacy protection for patients and the complexity of implementing technologies. Therefore the study proposes that the promotion of large language model applications in drug clinical R&D should be based on effective communication with regulatory authorities guided by project outcomes business needs and patient welfare providing valuable insights for the future application of large language models in drug clinical research and development.


Key words:  , Large language models , Clinical research and development , Clinical operation , Biopharmaceuticals

中图分类号: