• 中国核心期刊数据库收录期刊
  • 中文科技期刊数据库收录期刊
  • 中国期刊全文数据库收录期刊
  • 中国学术期刊综合评价数据库统计源期刊等

快速检索引用检索图表检索高级检索

中国医药导刊 ›› 2024, Vol. 26 ›› Issue (5): 461-465.

• 临床医药 • 上一篇    下一篇

CGM技术监测2型糖尿病患者血糖波动幅度与SMBG血糖波动指标的相关性研究

罗琳, 张迎*, 郭庆妍   

  1. 上海市杨浦区控江医院内分泌科,上海 200093
  • 收稿日期:2024-05-14 修回日期:2024-07-05 出版日期:2024-05-28 发布日期:2024-05-28
  • 基金资助:

    上海市杨浦区控江医院第六届院级课题科研项目(KJ23M08)

Study on the Correlation between CGM Monitoring Blood Glucose Fluctuation and SMBG Blood Glucose Fluctuation Indexes in Type 2 Diabetes Patients

  1. Endocrine DepartmentKongjiang Hospital of Shanghai Yangpu District Shanghai 200093,China
  • Received:2024-05-14 Revised:2024-07-05 Online:2024-05-28 Published:2024-05-28

摘要:

目的:研究2型糖尿病患者持续葡萄糖监测(CGM)技术监测血糖波动幅度与自我血糖监测(SMBG)血糖波动指标的相关性。方法:选取我院20226月至20236月收治的822型糖尿病患者进行研究。所有患者均接受7个时间点(三餐前、餐后2 h以及睡前)的SMBG48~72 hCGM,同时根据7个时间点SMBG数据计算血糖变异系数(CV)、最大血糖波动幅度(LAGE)、平均血糖波动幅度(MAGE1SMBG计算得出)、血糖水平的标准差(SDBG)、餐后血糖波动幅度(PPGE)等血糖波动指标,采用简单线性回归分析法、Spearman秩相关分析法、多元逐步回归分析法,分析通过CGM获得的MAGE与通过SMBG计算得出的CVLAGEMAGE1SDBGPPGE之间的相关性。结果:以通过CGM获得的MAGE为因变量,以通过SMBG计算得出的CVLAGEMAGE1SDBGPPGE为自变量进行多元逐步回归分析,结果显示,通过CGM获得的MAGE与通过SMBG计算得出的CVLAGEMAGE1SDBGPPGE有关(P<0.05)。Spearman秩相关分析结果显示,通过CGM获得的MAGE与通过SMBG计算得出的CVLAGEMAGE1SDBGPPGE之间呈正相关(P<0.05)。结论:2型糖尿病患者CGM技术监测得出的MAGESMBG计算得出的CVLAGEMAGE1SDBGPPGE等血糖波动指标具有一定相关性,因此可通过SMBG计算得出的血糖波动指标反映2型糖尿病患者日内血糖波动情况。


关键词: 2型糖尿病, 持续葡萄糖监测, 自我血糖监测, 血糖波动, 相关性

Abstract:

Objective: To study the correlation between the amplitude of blood glucose fluctuations measured by continuous glucose monitoring CGM and the self-monitoring of blood glucose SMBG blood glucose fluctuation indexes in patients with type 2 diabetes.Methods: 82 cases type 2 diabetes patients in our hospital from June 2022 to June 2023 were selected in the study. All the patients received SMBG at 7 time points before meals 2 h after mealsand before sleep and CGM for 48-72 h. Blood glucose fluctuation indicators such as coefficient of variation CV), largest amplitude of glycemic excursions LAGE), mean amplitude of glucose excursion1 MAGE1 calculated by SMBG), standard deviation of blood glucose SDBG), and postprandial glucose excursion PPGE were calculated based on 7 time point SMBG data. Simple linear regression analysis Spearman rank correlation analysis and multiple stepwise regression analysis were used to analyze the correlation between MAGE obtained through CGM and CV LAGE MAGE1 SDBG and PPGE calculated through SMBG.Results: Multiple stepwise regression analysis was conducted using MAGE obtained through CGM as the dependent variable and CV LAGE MAGE1 SDBG and PPGE calculated through SMBG as the independent variables. The results showed that MAGE obtained through CGM was related to CV LAGE MAGE1 SDBG and PPGE calculated through SMBG P<0.05. The Spearman rank correlation analysis results showed that the MAGE obtained through CGM was positively correlated with CV LAGE MAGE1 SDBG and PPGE calculated through SMBG P<0.05.Conclusion: The MAGE obtained through CGM monitoring is correlated with the blood glucose fluctuation indicators such as CV LAGE MAGE1 SDBG PPGEcalculated through SMBG in type 2 diabetes patients. The blood glucose fluctuation indicators calculated through SMBG can be used to reflect the daily blood glucose fluctuation of type 2 diabetes patients.


Key words: Type 2 diabetes , Continuous glucose monitoring , Self-monitoring blood glucose , Blood glucose fluctuations , Correlation

中图分类号: