[1] Trotti A, Bellm LA, Epstein JB, et al. Mucositis incidence, severity and associated
outcomes in patients with head and neck cancer receiving radiotherapy with or
without chemotherapy: a systematic literature
review[J]. Radiother Oncol, 2003, 66(3): 253-262.
[2] Zhang M, Ma Y, Ye X, et al. TRP (transient receptor potential) ion channel family: structures, biological functions
and therapeutic interventions for diseases[J]. Signal Transduct Target Ther, 2023, 8(1): 261.
[3] Clapham DE, Runnels LW, Strübing C. The TRP ion
channel family[J]. Nat Rev Neurosci, 2001, 2(6): 387-396.
[4] Sonis ST, Elting LS, Keefe D, et al. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients[J]. Cancer, 2004, 100(9 Suppl): 1995-2025.
[5] Logan RM, Gibson RJ, Sonis ST, et al. Nuclear factor-kappaB (NF-kappaB) and cyclooxygenase-2 (COX-2) expression in the oral mucosa following cancer chemotherapy[J]. Oral Oncol, 2007, 43(4): 395-401.
[6] Sonis ST. Pathobiology of
oral mucositis: novel insights and opportunities[J]. J Support Oncol, 2007, 5(9 Suppl 4): 3-11.
[7] Handschel J, Sunderkötter C, Prott FJ, et al. Increase of RM3/1-positive
macrophages in radiation-induced oral mucositis[J]. J Pathol, 2001, 193(2): 242-247.
[8] Yeoh A, Gibson R, Yeoh E, et al. Radiation therapy-induced
mucositis: relationships between fractionated radiation, NF-kappaB, COX-1, and COX-2[J]. Cancer Treat Rev, 2006, 32(8): 645-651.
[9] Sonis ST. A hypothesis for
the pathogenesis of radiation-induced oral mucositis: when biological
challenges exceed physiologic protective mechanisms. Implications for
pharmacological prevention and treatment[J]. Support Care Cancer, 2021, 29(9): 4939-4947.
[10] Iwata K, Shinoda M. Role of neuron and non-neuronal cell communication in persistent orofacial pain[J]. J Dent Anesth Pain Med, 2019, 19(2): 77-82.
[11] He B, Wang W, Zhang R, et al. Fluorescence visualization of the neuropathic pain triad in
trigeminal neuralgia[J]. J Biophotonics, 2023, 16(3): e202200301.
[12] Lin J, Zhou L, Luo Z, et al. Flow cytometry analysis of immune and glial cells in a
trigeminal neuralgia rat model[J]. Sci Rep, 2021, 11(1): 23569.
[13] Terrier LM, Hadjikhani N, Destrieux C. The
trigeminal pathways[J]. J Neurol, 2022, 269(7): 3443-3460.
[14] Lopes DM, Denk F, McMahon SB. The
molecular fingerprint of dorsal root and trigeminal ganglion neurons[J]. Front Mol Neurosci, 2017, 10: 304.
[15] Liu C, Tao J, Wu H, et al. Effects of
LncRNA BC168687 siRNA on diabetic neuropathic pain mediated by P2X(7) receptor on SGCs in DRG of rats[J]. Biomed Res Int, 2017: 7831251.
[16] Song J, Ying Y, Wang W, et al. The role of P2X7R/ERK signaling in dorsal root ganglia
satellite glial cells in the development of chronic postsurgical pain induced
by skin/muscle incision and retraction (SMIR)[J]. Brain Behav Immun, 2018, 69: 180-189.
[17] Pérez-Flores G, Lévesque SA, Pacheco J, et al. The P2X7/P2X4
interaction shapes the purinergic response in murine macrophages[J]. Biochem Biophys Res Commun, 2015, 467(3): 484-490.
[18] Luo Y, Suttle A, Zhang Q, et al. Transient receptor potential (TRP) Ion channels in orofacial pain[J]. Mol Neurobiol, 2021, 58(6): 2836-2850.
[19] Urata K, Shinoda M, Honda K, et al. Involvement of TRPV1 and TRPA1 in incisional intraoral and
extraoral pain[J]. J Dent Res, 2015, 94(3): 446-454.
[20] Gualdani R, Gailly P, Yuan JH, et al. A TRPM7 mutation linked to familial trigeminal neuralgia: omega current and hyperexcitability of trigeminal ganglion neurons[J]. Proc Natl Acad Sci USA, 2022, 119(38): e2119630119.
[21] Chung MK, Ro JY. Peripheral glutamate receptor and transient receptor
potential channel mechanisms of craniofacial muscle pain[J]. Mol Pain, 2020, 16: 1744806920914204.
[22] Meneses CS, Gidcumb EM, Marcus KL, et al. Acute radiotherapy-associated oral
pain may promote tumor growth at distant sites[J]. Front Oncol, 2023, 13: 1029108.
[23] Honda K, Shinoda M, Furukawa A, et al. TRPA1 contributes to capsaicin-induced facial cold hyperalgesia in rats[J]. Eur J Oral Sci, 2014, 122(6): 391-396.
[24] Chen Y, Kanju P, Fang Q, et al. TRPV4 is necessary for trigeminal irritant pain and
functions as a cellular formalin receptor[J]. Pain, 2014, 155(12): 2662-2672.
[25] Gouin O, L'Herondelle K, Lebonvallet N, et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic
inflammation: pro-inflammatory
response induced by their activation and their sensitization[J]. Protein Cell, 2017, 8(9): 644-661.
[26] Mathivanan S, Devesa I, Changeux JP, et al. Bradykinin induces TRPV1 exocytotic recruitment in
peptidergic nociceptors[J]. Front Pharmacol, 2016, 7: 178.
[27] Aguiar DD, da Costa Oliveira C, Fonseca FCS, et al. Peripherally injected canabidiol reduces neuropathic pain in
mice: role of the 5-HT(1A) and TRPV1 receptors[J]. Biochem Biophys Res Commun, 2023, 660: 58-64.
[28] Moore C, Gupta R, Jordt SE, et al. Regulation of pain and itch by TRP channels[J]. Neurosci Bull, 2018, 34(1): 120-142.
[29] Wu YW, Bi YP, Kou XX, et al. 17-Beta-estradiol enhanced allodynia of inflammatory temporomandibular joint
through upregulation of hippocampal TRPV1 in ovariectomized rats[J]. J Neurosci, 2010, 30(26): 8710-8719.
[30] Demartini C, Greco R, Zanaboni AM, et al. Antagonism of transient receptor potential ankyrin type-1 channels as a potential target for the treatment of trigeminal
neuropathic pain: study in an animal model[J]. Int J Mol Sci, 2018, 19(11): 3320.
[31] Yamamoto T, Ono K, Hitomi S, et al. Endothelin
receptor-mediated responses in trigeminal ganglion neurons[J]. J Dent Res, 2013, 92(4): 335-339.
[32] Naert R, López-Requena A, Talavera K. TRPA1
expression and pathophysiology in immune cells[J]. Int J Mol Sci, 2021, 22(21): 11460.
[33] Logashina YA, Korolkova YV, Kozlov SA, et al. TRPA1 Channel as a regulator of neurogenic inflammation and
pain: structure, function, role in pathophysiology, and therapeutic potential of ligands[J]. Biochemistry (Mosc), 2019, 84(2): 101-118.
[34] Fischer L, Lavoranti MI, de Oliveira Borges M, et al. TRPA1, substance P, histamine and 5-hydroxytryptamine interact in an interdependent way to induce nociception[J]. Inflamm Res, 2017, 66(4): 311-322.
[35] Iannone LF, Nassini R, Patacchini R, et al. Neuronal and non-neuronal TRPA1
as therapeutic targets for pain and headache relief[J]. Temperature (Austin), 2023, 10(1): 50-66.
[36] Koivisto A, Jalava N, Bratty R, et al. TRPA1 antagonists for pain relief[J]. Pharmaceuticals (Basel), 2018, 11(4): 117.
[37] Nodai T, Hitomi S, Ono K, et al. Endothelin-1 elicits TRP-mediated pain in an acid-induced oral
ulcer model[J]. J Dent Res, 2018, 97(8): 901-908.
[38] Meseguer V, Alpizar YA, Luis E, et al. TRPA1 channels mediate acute neurogenic inflammation and
pain produced by bacterial endotoxins[J]. Nat Commun, 2014, 5: 3125.
[39] Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and
inflammation[J]. Nature, 2013, 501(7465): 52-57.
[40] Zhao P, Lieu T, Barlow N, et al. Neutrophil elastase activates protease-activated receptor-2 (PAR2) and transient receptor
potential vanilloid 4 (TRPV4) to cause inflammation and pain[J]. J Biol Chem, 2015, 290(22): 13875-13887.
[41] Alessandri-Haber N, Dina OA, Yeh JJ, et al. Transient
receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat[J]. J Neurosci, 2004, 24(18): 4444-4452.
[42] Lawhorn BG, Brnardic EJ, Behm DJ. Recent
advances in TRPV4 agonists and antagonists[J]. Bioorg Med Chem Lett, 2020, 30(8): 127022.
[43] Zeisel A, Hochgerner H, Lönnerberg P, et al. Molecular architecture of the mouse nervous system[J]. Cell, 2018, 174(4): 999-1014.e1022.
[44] Akin EJ, Higerd-Rusli GP, Mis MA, et al. Building sensory axons: delivery and
distribution of Na(V)1.7 channels and effects of inflammatory mediators[J]. Sci Adv, 2019, 5(10): eaax4755.
[45] Domaneschi C, Carvalho VJG, Marotta BM, et al. Voltage-gated sodium channels gene expression in burning mouth syndrome: a case-control study[J]. Braz Oral Res, 2023, 37: e005.
[46] Hitomi S, Ono K, Terawaki K, et
al. [6]-gingerol and [6]-shogaol, active ingredients of
the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain
via action on Na(+) channels[J]. Pharmacol Res, 2017, 117: 288-302.
[47] Morera E, De Petrocellis L, Morera L, et al. Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and
TRPA1 modulators[J]. Bioorg Med Chem Lett, 2012, 22(4): 1674-1677.
[48] Goodwin G, McMahon SB. The physiological function of different voltage-gated sodium channels in pain[J]. Nat Rev Neurosci, 2021, 22(5): 263-274.
[49] Koenig J, Werdehausen R, Linley JE, et al. Regulation of Nav1.7: a conserved SCN9A
natural antisense transcript expressed in dorsal root ganglia[J]. PLoS One, 2015, 10(6): e0128830.
[50] McDermott LA, Weir GA, Themistocleous AC, et al. Defining the functional role of Na(V)1.7 in human nociception[J]. Neuron, 2019, 101(5): 905-919.e908.
[51] Niu HL, Liu YN, Xue DQ, et al. Inhibition of Nav1.7 channel by a novel blocker QLS-81 for alleviation of neuropathic pain[J]. Acta Pharmacol Sin, 2021, 42(8): 1235-1247.
[52] Lampert A, O'Reilly AO, Reeh P, et al. Sodium channelopathies and pain[J]. Pflugers Arch, 2010, 460(2): 249-263.
[53] Kao DJ, Li AH, Chen JC, et al. CC chemokine
ligand 2 upregulates the current density and expression of TRPV1 channels and
Nav1.8 sodium channels in dorsal root ganglion neurons[J]. J Neuroinflammation, 2012, 9: 189.
[54] Abrahamsen B, Zhao J, Asante CO, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain[J]. Science, 2008, 321(5889): 702-705.
[55] Leo S, D'Hooge R, Meert T. Exploring the
role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and
Nav1.9 knockout mice[J]. Behav Brain Res, 2010, 208(1): 149-157.
[56] Emery EC, Habib AM, Cox JJ, et al. Novel SCN9A mutations underlying extreme pain phenotypes: unexpected electrophysiological and clinical phenotype correlations[J]. J Neurosci, 2015, 35(20): 7674-7681.
[57] Xiao Y, Barbosa C, Pei Z, et al. Increased resurgent sodium currents in Nav1.8 contribute to
nociceptive sensory neuron hyperexcitability associated with peripheral
neuropathies[J]. J Neurosci, 2019, 39(8): 1539-1550.
[58] Maingret F, Coste B, Padilla F, et al. Inflammatory mediators increase Nav1.9 current and
excitability in nociceptors through a coincident detection mechanism[J]. J Gen Physiol, 2008, 131(3): 211-225.
[59] Han C, Yang Y, de Greef BT, et al. The Domain II S4-S5 linker in
Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human
painful neuropathy[J]. Neuromolecular Med, 2015, 17(2): 158-169.
[60] Ma T, Li L, Chen R, et al. Protein arginine
methyltransferase 7 modulates neuronal excitability by interacting with NaV1.9[J]. Pain, 2022, 163(4): 753-764.
[61] González C, Baez-Nieto D, Valencia I, et al. K(+) channels: function-structural overview[J]. Compr Physiol, 2012, 2(3): 2087-2149.
[62] Yu T, Li L, Liu H, et al. KCNQ2/3/5
channels in dorsal root ganglion neurons can be therapeutic targets of
neuropathic pain in diabetic rats[J]. Mol Pain, 2018, 14: 1744806918793229.
[63] Qian C, Dai Y, Xu X, et al. HIF-1α regulates proliferation and invasion of oral cancer cells through
Kv3.4 channel[J]. Ann Clin Lab Sci, 2019, 49(4): 457-467.
[64] Elad S, Cheng KKF, Lalla RV, et al. MASCC/ISOO clinical practice guidelines for the management
of mucositis secondary to cancer therapy[J]. Cancer, 2020, 126(19): 4423-4431.
[65] Sio TT, Le-Rademacher JG, Leenstra JL, et al. Effect of doxepin mouthwash or diphenhydramine-lidocaine-antacid mouthwash vs placebo on radiotherapy-related oral mucositis pain: the alliance A221304
randomized clinical trial[J]. JAMA, 2019, 321(15): 1481-1490.
[66] Nunes LFM, de Arruda JAA, Souza AF, et al. Prophylactic photobiomodulation therapy using 660 nm diode
laser for oral mucositis in paediatric patients under chemotherapy: 5-year experience from a Brazilian referral service[J]. Lasers Med Sci, 2020, 35(8): 1857-1866.
[67] Correa MEP, Cheng KKF, Chiang K, et al. Systematic review of oral cryotherapy for the management of
oral mucositis in cancer patients and clinical practice guidelines[J]. Support Care Cancer, 2020, 28(5): 2449-2456.
[68] Xia C, Jiang C, Li W, et al. A Phase II randomized clinical trial and mechanistic studies
using improved probiotics to prevent oral mucositis induced by concurrent
radiotherapy and chemotherapy in nasopharyngeal carcinoma[J]. Front Immunol, 2021, 12: 618150.
[69] Gavva NR, Tamir R, Qu Y, et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a
novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties[J]. J Pharmacol Exp Ther, 2005, 313(1): 474-484.
[70] Hermanns H, Hollmann MW, Stevens MF, et al. Molecular mechanisms of action of systemic lidocaine in
acute and chronic pain: a narrative review[J]. Br J Anaesth, 2019, 123(3): 335-349.
[71] Singh S, Kerndt CC, Chauhan S, et al. Mexiletine[M]. StatPearls. City: StatPearls Publishing, 2023.
[72] Nguyen PT, DeMarco KR, Vorobyov I, et al. Structural basis for antiarrhythmic drug interactions with
the human cardiac sodium channel[J]. Proc Natl Acad Sci USA, 2019, 116(8): 2945-2954.
[73] Lee S, Jo S, Talbot S, et al. Novel charged
sodium and calcium channel inhibitor active against neurogenic inflammation[J]. Elife, 2019, 8: e48118.
[74] Beckley JT, Pajouhesh H, Luu G, et al. Antinociceptive properties of an isoform-selective inhibitor of Nav1.7 derived from saxitoxin in mouse models
of pain[J]. Pain, 2021, 162(4): 1250-1261.
[75] Mulcahy JV, Pajouhesh H, Beckley JT, et al. Challenges and opportunities for therapeutics targeting the
voltage-gated sodium channel isoform Na(V)1.7[J]. J Med Chem, 2019, 62(19): 8695-8710.
[76] Abd-Elsayed A, Jackson M, Gu SL, et al. Neuropathic pain and Kv7 voltage-gated potassium channels: the potential role of
Kv7 activators in the treatment of neuropathic pain[J]. Mol Pain, 2019, 15: 1744806919864256.
|