• 中国核心期刊数据库收录期刊
  • 中文科技期刊数据库收录期刊
  • 中国期刊全文数据库收录期刊
  • 中国学术期刊综合评价数据库统计源期刊等

快速检索引用检索图表检索高级检索

中国医药导刊 ›› 2025, Vol. 27 ›› Issue (3): 247-256.

• 医药信息学 • 上一篇    下一篇

基于生物信息学和机器学习的溃疡性结肠炎活动期与非活动期特征基因及靶向中药预测研究

姚筱朵1, 祖国秀2a, 沈悦1, 汤继芹2b*   

  1. 1.山东第二医科大学康复医学院,山东 潍坊 261053;
    2.山东中医药大学中医学院a,康复医学院b,山东 济南 250355
  • 收稿日期:2024-11-01 修回日期:2024-11-26 出版日期:2025-03-28 发布日期:2025-03-28
  • 基金资助:
     山东中医药大学首批科研创新优秀团队项目-经方治疗重大疾病作用机理与疗效评价创新团队(220316)

Characteristic Genes and Targeted Chinese Medicine Prediction of Active and Inactive Phases in Ulcerative Colitis Based on Bioinformatics and Machine Learning

  1. 1.Rehabilitation College Shandong Second Medical UniversityShandong Weifang 261053, China
    2.College of Traditional Chinese Medicinea Rehabilitation Collegeb
    Shandong University of Traditional Chinese MedicineShandong Jinan 250355, China
  • Received:2024-11-01 Revised:2024-11-26 Online:2025-03-28 Published:2025-03-28

摘要:

目的:采用生物信息学和机器学习的方法,初步探索溃疡性结肠炎(UC)活动期与非活动期的特征基因,并预测UC治疗的潜在靶向中药。方法:利用GEO数据库选取GSE179285GSE38713GSE75214GSE489594个数据集,采用GEO2R在线分析方法分别进行UC活动期与非活动期的差异表达基因(DEGs)筛选,在Metascape中对UC活动期与非活动期DEGs进行GO分析及KEGG通路富集分析,利用STRING12.0数据库进行UC活动期与非活动期DEGsPPI网络构建,采用Cytoscape软件得到UC活动期和UC非活动期的特征基因,将特征基因输入Coremine Medical进行靶向中药的初步筛选。结果:筛选出UC活动期DEGs 365个,UC非活动期DEGs 292个。UC活动期DEGs主要涉及对细菌的反应、炎症反应、免疫球蛋白介导的免疫反应、CXCR趋化因子受体结合等生物学过程,KEGG通路主要富集在金黄色葡萄球菌感染和胆汁分泌上。UC非活动期DEGs主要涉及对激素的反应、单羧酸代谢过程、有机阴离子传输、细胞运动的负调控、脂质定位、MAPK级联的调节、细胞粘附分子结合、激酶结合等生物学过程,KEGG通路主要集中在视黄醇代谢、蛋白质消化和吸收。PPI网络构建及Cytoscape得到UC活动期特征基因IL1BCXCL8CXCL10MMP9IL1AICAM1CXCL1CXCR2CCL2CXCL13UC非活动期特征基因CDC42FN1CDH1EZRIQGAP1WASLGSNTFRCGJA1CTNNA1。通过Coremine Medical平台进一步筛选出治疗UC活动期与非活动期的潜在中药共22种。结论:该研究通过分析UC活动期与非活动期的DEGs,筛选UC活动期与非活动期的特征基因,从而预测UC治疗的靶向中药,为治疗UC活动期与非活动期提出了更精确的治疗方案。


关键词: 溃疡性结肠炎活动期, 溃疡性结肠炎非活动期, 特征基因, 靶向中药, 生物信息学分析, 机器学习

Abstract:

Objective: Bioinformatics and machine learning were used to initially explore the characteristic genes in the active and inactive phases of ulcerative colitis UC and to predict the potential targeted traditional Chinese medicine TCM for the treatment of ulcerative colitis.Methods: The four datasets GSE179285 GSE38713 GSE75214 GSE48959 were filtered out with the GEO database. Online analysis of GEO2R was used to screen differentially expressed genesDEGs in UC active and inactive phases. In Metascape GO analysis and KEGG pathway enrichment analysis were carried out for DEGs of UC active and inactive phases. PPI network construction of DEGs of UC active and inactive phases was performed in the STRING12.0 database. Characteristic genes of active and inactive UC were obtained by Cytoscape software and were imported into Coremine Medical for preliminary screening of targeted TCM.Results: A total of 365 DEGs in active phase UC and 292 DEGs in inactive phase UC were screened out. The DEGs of active phase UC mainly involve biological processes such as response to bacteria inflammatory response immunoglobulin mediated immune response and CXCR chemokine receptor binding and the KEGG pathway is mainly enriched in staphylococcus aureus infection and bile secretion. DEGs of inactive UC mainly involve the response to hormone monocarboxylic acid metabolic process organic anion transportnegative regulation of cell motility lipid localization regulation of MAPK cascade cell adhesion molecule binding kinase binding and other biological processes. KEGG pathway mainly focuses on retinol metabolism protein digestion and absorption. The characteristic genes of active phase UC IL1B CXCL8 CXCL10 MMP9 IL1A ICAM1 CXCL1 CXCR2 CCL2 CXCL13), and the characteristic genes of inactive phase UC CDC42 FN1 CDH1 EZR IQGAP1 WASL GSN TFRC GJA1 and CTNNA1 were obtained by PPI network construction and Cytoscape. A total of 22 potential targeted TCM for the active and inactive phase of UC were further selected by Coremine Medical platform.Conclusion: By analyzing the DEGs of active and inactive phases of UC the characteristic genes were screened out to predict targeted TCM which proposed a more precise treatment plan for the treatment of active and inactive UC.


Key words:  , Active phase of ulcerative colitis , Inactive phase of ulcerative colitis , Characteristic gene , Targeted traditional Chinese medicine , Bioinformatics analysis , Machine learning

中图分类号: