• 中国核心期刊数据库收录期刊
  • 中文科技期刊数据库收录期刊
  • 中国期刊全文数据库收录期刊
  • 中国学术期刊综合评价数据库统计源期刊等

快速检索引用检索图表检索高级检索

中国医药导刊 ›› 2025, Vol. 27 ›› Issue (8): 766-773.

• 研究进展 • 上一篇    下一篇

线粒体动力学在心肌缺血再灌注损伤中的研究进展

李宏玉, 纪成业, 郭旺, 李洪欣, 聂绮雯, 唐强*   

  1. 黑龙江中医药大学,黑龙江 哈尔滨 150040
  • 收稿日期:2025-05-05 修回日期:2025-07-24 接受日期:2025-10-10 出版日期:2025-08-28 发布日期:2025-10-13
  • 基金资助:

     黑龙江省中医药科研项目(ZHY2022-164);黑龙江省博士后资助经费(LBH-Z20201);黑龙江省博士后特别资助(LBH-TZ2318)

Research Progress on Mitochondrial Dynamics in Myocardial Ischemia-Reperfusion Injury

LI Hongyu, JI Chengye, GUO Wang, LI Hongxin, NIE Qiwen, TANG Qiang*   

  1. Heilongjiang University of Traditional Chinese Medicine Heilongjiang Harbin 150040, China
  • Received:2025-05-05 Revised:2025-07-24 Accepted:2025-10-10 Online:2025-08-28 Published:2025-10-13

摘要:

急性心肌梗死(AMI)常通过经皮冠状动脉介入术(PCI)实现冠脉血流再通,但再灌注可能诱发心肌缺血再灌注损伤(MIRI),这一病理过程与线粒体功能紊乱密切相关,其中线粒体作为心肌细胞代谢与能量供应的核心细胞器,其动力学平衡在MIRI中发挥关键调控作用。线粒体动力学系统主要包括融合与分裂两大形态变化过程,以及依赖细胞骨架的转运活动,三者均由GTP酶家族精密调控。融合过程依赖线粒体融合蛋白Mfn1/2和视神经萎缩蛋白OPA1,而分裂由发动蛋白Drp1及其受体Fis1Mff等协同调控。Drp1活性受磷酸化、小泛素相关修饰(SUMO)、泛素化等多种翻译后修饰动态调节,其异常激活可导致线粒体过度分裂并触发细胞凋亡。OPA1通过维持线粒体嵴结构完整性,从而保障呼吸链超复合物(RCS)的组装与功能。线粒体亦可通过细胞微管系统或隧道纳米管进行细胞间转运,参与能量代谢代偿性调节。在MIRI病理条件下,氧化应激、钙超载及mPTP持续开放等关键事件可破坏线粒体动力学稳定,形成恶性循环,加重心肌损伤。目前尽管已有研究初步揭示了线粒体动力学在MIRI中的作用,但其分子调控网络尚未系统阐明。本研究聚焦线粒体动力学核心机制及其在MIRI中的病理作用,旨在为解析MIRI机制提供新依据。未来需整合多组学与动态可视化技术,揭示其时空特异性调控规律,为临床防治MIRI提供新靶点。

  

关键词: 线粒体动力学, 心肌缺血再灌注损伤, 融合蛋白, 分裂蛋白

Abstract:

Acute myocardial infarction AMI is commonly treated by percutaneous coronary intervention PCI to restore coronary blood flow. However reperfusion may trigger myocardial ischemia-reperfusion injury MIRI), a pathological process closely associated with mitochondrial dysfunction. As the central organelle for metabolism and energy supply in cardiomyocytes mitochondria play a pivotal regulatory role in MIRI through the maintenance of mitochondrial dynamics homeostasis.Mitochondrial dynamics encompass two major morphological processes fusion and fission as well as cytoskeleton-dependent transport all of which are precisely regulated by members of the GTPase family. Fusion is mediated by mitofusin 1 and 2 Mfn1/2 on the outer mitochondrial membrane and optic atrophy 1 OPA1 on the inner membrane. Fission is orchestrated by dynamin-related protein 1 Drp1 and its receptors such as fission protein 1 Fis1 and mitochondrial fission factor Mff. Drp1 activity is dynamically modulated by various post-translational modifications PTMs), including phosphorylation SUMO and ubiquitination. Aberrant activation of Drp1 leads to excessive mitochondrial fragmentation and promotes apoptosis. OPA1 by preserving cristae architecture is essential for the assembly and function of respiratory chain supercomplexes RCS.Mitochondria can also undergo intercellular transfer via the microtubule network or tunneling nanotubes TNTs), thereby participating in compensatory energy metabolism regulation. Under MIRI conditions key events such as oxidative stress calcium overload and persistent opening of the mitochondrial permeability transition pore mPTP disrupt mitochondrial dynamic stability creating a vicious cycle that exacerbates myocardial injury.Although recent studies have preliminarily revealed the role of mitochondrial dynamics in MIRI the molecular regulatory network remains incompletely characterized. This study focuses on the core mechanisms of mitochondrial dynamics and their pathological roles in MIRI aiming to provide new mechanistic insights into MIRI pathogenesis. Future research should integrate multi-omics approaches and dynamic imaging technologies to uncover the spatiotemporal regulation of mitochondrial dynamics thereby identifying novel therapeutic targets for the prevention and treatment of MIRI.

 

Key words: Mitochondrial dynamics , Myocardial ischemia-reperfusion injury , Fusion proteins , Fission protein

中图分类号: