|
[1] Cieza A, Causey K, Kamenov K, et al. Global estimates of the need for rehabilitation based on the
global burden of disease study 2019: a systematic analysis
for the Global Burden of Disease Study 2019[J].Lancet, 2021,396(10267):2006-2017.
[2] Navarese EP, Robinson JG, Kowalewski M, et al. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and
meta-analysis[J].JAMA, 2018,319(15):1566-1579.
[3] Beltowski J, Wojcicka G, Jamroz-Wisniewska A. Adverse effects of statins - mechanisms and consequences[J].Curr Drug Saf, 2009,4(3):209-228.
[4] Alla VM, Agrawal V, DeNazareth A, et al. A reappraisal of the risks and benefits of treating to
target with cholesterol lowering drugs[J].Drugs, 2013,73(10):1025-1054.
[5] Liu L, Li Y, Zheng X, et al. Natural
polysaccharides regulate intestinal microbiota for inhibiting colorectal cancer[J].Heliyon, 2024,10(10):e31514.
[6] Zeng P, Li J, Chen Y, et al. The structures
and biological functions of polysaccharides from traditional Chinese herbs[J].Prog Mol Biol Transl Sci, 2019,163:423-444.
[7] El KA, Armougom F, Gordon JI, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J].Nat Rev Microbiol, 2013,11(7):497-504.
[8] Hui DY, Howles PN. Molecular mechanisms of cholesterol absorption and
transport in the intestine[J]. Semin Cell Dev Biol, 2005,16(2):183-192.
[9] Wang DQ. Regulation of
intestinal cholesterol absorption[J].Annu Rev Physiol, 2007,69:221-248.
[10] Altmann SW, Davis HJ, Zhu L J, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol
absorption[J].Science, 2004,303(5661):1201-1204.
[11] Carr TP, Gallaher DD, Yang C H, et al. Increased intestinal contents viscosity reduces cholesterol
absorption efficiency in hamsters fed hydroxypropyl methylcellulose[J].J Nutr, 1996, 126 (5):1463-1469.
[12] Joyce SA, Kamil A, Fleige L, et al. The cholesterol-lowering effect
of oats and oat beta glucan: modes of action and
potential role of bile acids and the microbiome[J].Front Nutr, 2019,6:171.
[13] Silva I, Machado F, Moreno MJ, et al. Polysaccharide structures and their hypocholesterolemic
potential[J].Molecules, 2021,26(15):4559-4559.
[14] 张荣,冯玛莉,武玉鹏,等.决明子降血脂有效部位及其量效关系的实验研究[J]. 中国药物与临床,2005,5(3):183-185.
[15] Huang YL, Chow CJ, Tsai YH. Composition, characteristics, and in-vitro physiological effects of the water-soluble polysaccharides from Cassia seed[J].Food Chem, 2012,134(4):1967-1972.
[16] Chanyuan X, Wei G, Xue L, et al. Study on the
hypolipidemic properties of garlic polysaccharide in vitro and in normal mice
as well as its dyslipidemia amelioration in type2 diabetes mice[J].Food Bioscience, 2022,47:101683.
[17] Jing Y, Cao RX, Lei X, et al. Structural characterization of polysaccharide from the peel
of Trichosanthes kirilowii Maxim and its anti-hyperlipidemia activity by regulating gut microbiota and inhibiting
cholesterol absorption[J].Bioorg Chem, 2024,149:107487.
[18] 陈挚,雷亚亚,黑晶,等.胡芦巴多糖及低聚糖调血脂活性研究[J].中草药,2015,46(8):1184-1189.
[19] 王凯,李敏,张言捷,等.孔石莼多糖及其磺化衍生物HU体外结合脂类和胆固醇的研究[J].药学研究,2013,32(7):379-383.
[20] Cheng Y, Tang K, Wu S, et al. Astragalus polysaccharides lowers plasma cholesterol through
mechanisms distinct from statins[J].PLoS One, 2011,6(11):e27437.
[21] He Z, Zhang Z, Xu P, et al. Laminarin reduces cholesterol uptake and NPC1L1 protein
expression in high-fat diet (HFD)-fed mice[J].Mar Drugs, 2023,21(12):624.
[22] Yu WQ, Wang XL, Ji HH, et al. CM3-SII polysaccharide obtained from Cordyceps militaris ameliorates
hyperlipidemia in heterozygous LDLR-deficient
hamsters by modulating gut microbiota and NPC1L1 and PPARalpha levels[J].Int J Biol Macromol, 2023,239:124293.
[23] Jia B, Zou Y, Han X, et al. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease[J].Trends Microbiol, 2023,31(1):76-91.
[24] Catinean A, Neag MA, Muntean DM, et al. An overview on the interplay between nutraceuticals and gut
microbiota[J].PeerJ, 2018,6:e4465.
[25] Gu W, Wang Y, Zeng L, et al. Polysaccharides from polygonatum kingianum improve glucose
and lipid metabolism in rats fed a high fat diet[J].Biomed Pharmacother, 2020,125:109910.
[26] Sun S S, Wang K, Ma K, et al. An insoluble polysaccharide from the sclerotium of Poria
cocos improves hyperglycemia, hyperlipidemia and
hepatic steatosis in ob/ob mice via modulation of gut microbiota[J].Chin J Nat Med, 2019,17(1):3-14.
[27] Collins SL, Stine JG, Bisanz JE, et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease[J].Nat Rev Microbiol, 2023,21(4):236-247.
[28] Kim I, Ahn SH, Inagaki T, et al. Differential regulation of bile acid homeostasis by the
farnesoid X receptor in liver and intestine[J].J Lipid Res, 2007,48(12):2664-2672.
[29] Perino A, Schoonjans K. Metabolic messengers: bile
acids[J].Nat Metab,2022,4(4):416-423.
[30] Zhou YF, Nie J, Shi C, et al. Lysimachia
christinae polysaccharide attenuates diet-induced hyperlipidemia via modulating gut microbes-mediated FXR-FGF15 signaling pathway[J].Int J Biol Macromol, 2023,248:125725.
[31] Shi L, Wang J, Wang Y, et al. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of
bile acids[J].Carbohydr Polym, 2016,150:74-81.
[32] Yang S, Li X, Yang F, et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target[J].Front Pharmacol, 2019,10:1360.
[33] Janeiro MH, Ramirez MJ, Milagro FI, et al. Implication of trimethylamine n-oxide (TMAO) in disease: potential biomarker or new therapeutic target[J].Nutrients, 2018,10(10):1398.
[34] Ding L, Chang M, Guo Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism[J].Lipids Health Dis, 2018,17(1):286.
[35] Chen M, Lu B, Li Y, et al. Metabolomics
insights into the modulatory effects of long-term compound polysaccharide intake in high-fat diet-induced obese rats[J].Nutr Metab (Lond), 2018,15:8.
[36] Liu Y, Lai G, Guo Y, et al. Protective
effect of Ganoderma lucidum spore extract in
trimethylamine-N-oxide-induced cardiac dysfunction in rats[J].J Food Sci, 2021,86(2):546-562.
[37] Guo W, Zhu S, Li S, et al. Microalgae
polysaccharides ameliorates obesity in association with modulation of lipid
metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice[J].Int J Biol Macromol, 2021,182:1371-1383.
[38] Ma Y, Zhu L, Ke H, et al. Oyster (Crassostrea gigas) polysaccharide
ameliorates obesity in association with modulation of lipid metabolism and gut
microbiota in high-fat diet fed mice[J].Int J Biol Macromol, 2022,216:916-926.
[39] Wang W, Zhong M, Yu T, et al. Polysaccharide extracted from WuGuChong reduces high-fat diet-induced obesity in mice by regulating the composition of intestinal
microbiota[J].Nutr Metab (Lond), 2020,17(1):27.
[40] Lan Y, Sun Q, Ma Z, et al. Seabuckthorn
polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis[J].Food Funct, 2022,13(5):2925-2937.
[41] Sang T, Guo C, Guo D, et al. Suppression of
obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J].Carbohydr Polym, 2021,256:117594.
[42] He G, Chen T, Huang L, et al. Tremella fuciformis polysaccharide reduces obesity in high-fat diet-fed mice by modulation of gut microbiota[J].Front Microbiol, 2022,13,1073350.
[43] Xia T, Liu CS, Hu YN, et al. Coix seed polysaccharides alleviate type 2 diabetes mellitus
via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling[J].Food Res Int, 2021,150(Pt A):110717.
[44] Rao Y, Wen Q, Liu R, et al. PL-S2, a homogeneous polysaccharide from Radix
Puerariae lobatae, attenuates hyperlipidemia via farnesoid X
receptor (FXR) pathway-modulated bile acid metabolism[J].Int J Biol Macromol, 2020,165(Pt B):1694-1705.
[45] Huang S, Pang D, Li X, et al. A sulfated polysaccharide from Gracilaria Lemaneiformis
regulates cholesterol and bile acid metabolism in high-fat diet mice[J].Food Funct, 2019,10(6):3224-3236.
[46] Wang T, Han J, Dai H, et al. Polysaccharides
from Lyophyllum decastes reduce obesity by altering gut microbiota and
increasing energy expenditure[J].Carbohydr Polym, 2022,295:119862.
[47] Tang H, Zha Z, Tan Y, et al. Extraction and
characterization of polysaccharide from fermented mycelia of Coriolus
versicolor and its efficacy for treating nonalcoholic fatty liver disease[J].Int J Biol Macromol, 2023,248:125951.
|