|
[1] Ajoolabady A, Wang S, Kroemer G, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics[J].Pharmacology
Therapeutics, 2021,225:107848.
[2] Barthels D, Das H. Current advances in ischemic stroke research and therapies[J].Biochim Biophys Acta Mol Basis Dis, 2020,1866(4):165260.
[3] Zhao Y, Zhang X, Chen X, et al. Neuronal injuries in cerebral infarction and ischemic stroke: from mechanisms to treatment (Review)[J].Int J Mol Med, 2022,49(2):15.
[4] Saini V, Guada L, Yavagal DR. Global
epidemiology of stroke and Access to acute ischemic stroke interventions[J].Neurology, 2021,97(20 Suppl 2):S6-S16.
[5] Tsivgoulis G, Katsanos AH, Sandset EC, et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives[J].Lancet Neurol, 2023,22(5):418-429.
[6] Tater P, Pandey S. Post-stroke movement disorders: clinical spectrum, pathogenesis, and management[J].Neurol India, 2021,69(2):272-283.
[7] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell 2012,149(5):1060-1072.
[8] Chen X, Kang R, Kroemer G, et al. Ferroptosis in infection, inflammation, and immunity[J].J Exp Med, 2021,218(6):e20210518.
[9] Sun Y, Li Q, Guo H, et al. Ferroptosis and
iron metabolism after intracerebral hemorrhage[J].Cells, 2022,12(1):90.
[10] Mahoney-Sánchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and
its potential role in the physiopathology of Parkinson’s Disease[J].Prog Neurobiol, 2021,196:101890.
[11] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death
nexus linking metabolism, redox biology, and disease[J].Cell, 2017,171(2):273-285.
[12] Yagoda N, Von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels[J].Nature, 2007,447(7146):864-868.
[13] Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J].Cell Death Dis, 2020,11(2):88.
[14] Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms
and health implications[J].Cell Research, 2021,31(2):107-125.
[15] Liu J, Kang R, Tang D. Signaling
pathways and defense mechanisms of ferroptosis[J].FEBS J, 2022,289(22):7038-7050.
[16] Sun S, Shen J, Jiang J, et al. Targeting ferroptosis opens new avenues for the development
of novel therapeutics[J].Signal Transduc Target Ther, 2023,8(1):372.
[17] Xie Y, Kang R, Klionsky DJ, et al. GPX4 in cell death, autophagy, and disease[J].Autophagy, 2023,19(10):2621-2638.
[18] Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation[J].Biomed Pharmacother, 2020,127:110108.
[19] Ding Y, Lei L, Lai C, et al. Tau protein and
zebrafish models for tau-induced neurodegeneration[J].J Alzheimers Dis, 2019, 69(2):339-353.
[20] Zhang Y, Lu X, Tai B, et al. Ferroptosis and
its multifaceted roles in cerebral stroke[J].Front Cell Neurosci, 2021,15:615372.
[21] Wang L, Zhang X, Xiong X, et al. Nrf2 regulates oxidative stress and its role in cerebral
ischemic stroke[J].Antioxidants (Basel), 2022,11(12):2377.
[22] Lan B, Ge JW, Cheng SW, et al. Extract of
Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in
rats[J].J Integr Med, 2020,18(4):344-350.
[23] Yao L, Ye Q, Liu Y, et al.
Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs
to the nucleus tractus solitarii through the parabrachial nuclei[J].Nat Commun, 2023,14(1):810.
[24] 杨婷,许军峰,秦文秀,等.针刺治疗脑缺血再灌注损伤机制的研究进展[J].中医药信息,2024,41(8):77-81.
[25] Li M, Tang H, Li Z, et al. Emerging treatment strategies for cerebral ischemia-reperfusion injury[J].Neuroscience, 2022,507:112-124.
[26] Xinchang Z, Zheng H, Peiyan H, et al. Mechanism of acupuncture in attenuating cerebral ischaemia-reperfusion injury based on nuclear receptor coactivator 4 mediated
ferritinophagy[J].J Tradit Chin Medi, 2024,44(2):345-352.
[27] 汪红娟,唐红,江姗姗,等.针刺对脑缺血再灌注损伤大鼠海马组织铁死亡的影响[J].湖南中医药大学学报,2022,42(10):1683-1687.
[28] 曹亚荣,马贤德,樊程程,等.基于System Xc(-)/GSH/GPX4抗氧化功能轴探讨眼针改善脑缺血再灌注损伤大鼠神经细胞铁死亡的作用机制[J].针刺研究,2024,49(12):1239-1247.
[29] 吴晓晴,王颖,韩为,等.电针预处理对脑缺血再灌注损伤大鼠神经元铁死亡的影响[J].针刺研究,2023,48(8):754-763.
[30] 梁润昱.电针调节脑铁代谢减少脑缺血再灌注后氧化损伤的机制研究[D].黑龙江中医药大学,2023.
[31] Zheng T, Jiang T, Huang Z, et al. Role of traditional Chinese medicine monomers in cerebral
ischemia/reperfusion injury:a review of the
mechanism[J].Front Pharmacol, 2023,14:1220862.
[32] Li M, Meng Z, Yu S, et al. Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating
GPX4/ACSL4/ACSL3 axis[J].Chem Biol Interact, 2022,366:110137.
[33] Liu H, Zhang TA, Zhang WY, et al. Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through
NRF2/SLC7A11/GPX4 pathway[J].Exp Neurol, 2023,369:114541.
[34] Pei R, Jiang Y, Lei G, et al. Rhein derivatives, a promising pivot?[J].Mini Rev Med Chem, 2021,21(5):554-575.
[35] Wang L, Liu C, Wang L, et al. Astragaloside IV
mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis[J].Eur J Pharmacol, 2023,944:175516.
[36] Xiao L, Dai Z, Tang W, et al. Astragaloside IV
alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating Nrf2[J].Oxid Med and Cell Longev, 2021,2021:9925561.
[37] 李鹏,杨晶,马艳梅,等.枸杞糖肽通过抑制铁死亡减轻高血糖大鼠脑缺血/再灌注损伤[J].中国药理学通报,2023,39(11):2043-2049.
[38] 陈娟,暴军,张颖,等.补阳还五汤对大鼠脑缺血再灌注损伤后脑组织铁转运相关蛋白的影响[J].中华中医药杂志,2023,38(11):5231-5236.
[39] 张建平,王文,屈阳柳,等.补阳还五汤通过调控miR-210减轻大鼠脑缺血再灌注损伤的实验研究[J].陕西中医,2024,45(9):1176-1180.
[40] 向军军,李丽琴,李建铮,等.基于铁死亡探讨温阳复元方对脑缺血再灌注损伤大鼠神经损伤的保护机制[J].中药新药与临床药理,2023,34(12):1649-1657.
[41] 张鼎,李方存,姜明贺,等.温阳复元方对脑缺血再灌注损伤大鼠JNK1/Bcl-2/Beclin 1信号通路相关蛋白及基因表达的影响[J].中华中医药杂志,2023,38(11):5208-5213.
[42] Lee KE, Choi M, Jeoung B. Effectiveness
of rehabilitation exercise in improving physical function of stroke patients: a systematic review[J].Int J Environ Re Public Health, 2022,19(19):12739.
[43] Penna LG, Pinheiro JP, Ramalho SHR, et al. Effects of aerobic physical exercise on neuroplasticity
after stroke: systematic review[J].Arq Neuro Psiquiatr, 2021,79(9):832-843.
[44] Huang M, Cheng S, Li Z, et al. Preconditioning exercise inhibits neuron ferroptosis and
ameliorates brain ischemia damage by skeletal muscle-derived exosomes via regulating miR-484/ACSL4 axis[J].Antioxid Redox Signal, 2024,41(13-15):769-792.
[45] Jia YZ, Liu J, Wang GQ, et al. miR-484: a potential biomarker in health and disease[J].Front in Oncol, 2022,12:830420.
[46] 刘桐烨.跑台训练通过抑制铁死亡改善脑缺血损伤的作用机制研究[D].青岛大学,2023.
[47] Nakai S, Fujita M, Kamei Y. Health
promotion effects of soy isoflavones[J].J Nut Sci Vitaminol, 2020,66(6):502-507.
[48] 李晒,李丽,闵思敏,等.大豆异黄酮可减轻大鼠脑缺血/再灌注损伤:基于抑制铁死亡及炎症级联反应[J].南方医科大学学报,2023,43(2):323-331.
[49] Cun Y, Jin Y, Wu D, et al. Exosome in
crosstalk between inflammation and angiogenesis: a
potential therapeutic strategy for stroke[J].Mediators Inflamm, 2022, 2022:7006281.
[50] Lee EC, Ha TW, Lee DH, et al. Utility of
exosomes in ischemic and hemorrhagic stroke diagnosis and treatment[J].Int J Mol Sci, 2022,23(15):8367.
[51] Wang Y, Niu H, Li L, et al. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron
ferroptosis[J].J Nanobiotechnology, 2023,21(1):109.
|