[1] Aguti S, Malerba A, Zhou H. The progress of
AAV-mediated gene therapy in neuromuscular disorders [J]. Expert Opin Biol Ther, 2018, 18(6): 681-693.
[2] Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[J]. Nat Rev Drug Discov, 2019, 18(5): 358-378.
[3] Monahan PE, Samulski RJ. Adeno-associated virus vectors for gene therapy: more pros than cons?[J]. Mol Med Today, 2000, 6(11): 433-440.
[4] Gao G, Vandenberghe LH, Alvira MR, et al. Clades of Adeno-associated
viruses are widely disseminated in human tissues [J]. J Virol, 2004, 78(12): 6381-6388.
[5] Pipe S, Leebeek FWG, Ferreira V, et al. Clinical considerations for capsid choice in the development
of liver-targeted AAV-based gene transfer [J]. Mol Ther Methods Clin Dev, 2019, 15: 170-178.
[6] Viney L, Bürckstümmer T, Eddington C, et al. Adeno-associated virus (AAV) capsid chimeras with enhanced infectivity reveal a core element in
the AAV genome critical for both cell transduction and capsid assembly[J]. J Virol, 2021, 95(7):e02023-20.
[7] Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using
AAV: progress and challenges [J]. Nat Rev Genet, 2011, 12(5): 341-355.
[8] Louis JV, Joergensen JA, Hajjar RJ, et al. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy [J]. Hum Gene Ther Methods, 2013, 24(2): 59-67.
[9] Samelson-Jones BJ, Finn JD, Favaro P, et al. Timing of
intensive immunosuppression impacts risk of transgene antibodies after AAV gene
therapy in nonhuman primates[J]. Mol Ther Methods Clin Dev, 2020, 17: 1129-1138.
[10] Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response [J]. Nat Med, 2006, 12(3): 342-347.
[11] Arjomandnejad M, Dasgupta I, Flotte TR, et al. Immunogenicity of recombinant adeno-associated virus (AAV) vectors for gene transfer[J]. BioDrugs, 2023, 37(3): 311-329.
[12] Ronzitti G, Gross DA, Mingozzi F. Human
immune responses to adeno-associated virus (AAV) vectors [J]. Front Immunol, 2020, 11: 670.
[13] Kuranda K, Jean-Alphonse P, Leborgne C, et al. Exposure to wild-type AAV drives
distinct capsid immunity profiles in humans[J]. J Clin Invest, 2018, 128(12): 5267-5279.
[14] Rogers GL, Shirley JL, Zolotukhin I, et al. Plasmacytoid and conventional dendritic cells cooperate in
crosspriming AAV capsid-specific CD8+ T cells[J]. Blood, 2017, 129(24): 3184-3195.
[15] Shirley JL, Keeler GD, Sherman A, et al. Type I IFN sensing by cDCs and CD4+ T cell help
are both requisite for cross-priming of AAV capsid-specific CD8+ T cells[J]. Mol Ther, 2020, 28(3): 758-770.
[16] Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820.
[17] Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence[J]. Nat Rev Immunol, 2007, 7(3): 179-190.
[18] Goubau D, Deddouche S, Reis e Sousa C.
Cytosolic sensing of viruses[J]. Immunity, 2013, 38(5): 855-869.
[19] Rogers GL, Suzuki M, Zolotukhin I, et al. Unique roles of TLR9- and MyD88-dependent and -independent pathways in adaptive immune responses to AAV-Mediated gene transfer[J]. J Innate Immun, 2015, 7(3): 302-314.
[20] Rabinowitz J, Chan YK, Samulski RJ. Adeno-associated virus (AAV) versus immune response[J]. Viruses, 2019, 11(2):102.
[21] Nidetz NF, McGee MC, Tse LV, et al. Adeno-associated viral vector-mediated immune
responses: Understanding barriers to gene delivery[J]. Pharmacol Ther, 2020, 207: 107453.
[22] Ashley SN, Somanathan S, Giles AR, et al. TLR9 signaling mediates adaptive immunity following systemic
AAV gene therapy[J]. Cell Immunol, 2019, 346: 103997.
[23] Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice[J]. J Clin Invest, 2009, 119(8): 2388-2398.
[24] Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as
adjuvants for vaccines targeting infectious diseases and cancer[J]. Vaccine, 2014, 32(48): 6377-6389.
[25] Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant[J]. Expert Rev Vaccines, 2011, 10(4): 499-511.
[26] Huang X, Yang Y. Targeting the TLR9-MyD88 pathway
in the regulation of adaptive immune responses[J]. Expert Opin Ther Targets, 2010, 14(8): 787-796.
[27] Faust SM, Bell P, Cutler BJ, et
al. CpG-depleted adeno-associated virus vectors evade immune detection[J]. J Clin Invest, 2013, 123(7): 2994-3001.
[28] Shao W, Earley LF, Chai Z, et al. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction[J]. JCI Insight, 2018, 3(12):e120474.
[29] Reichel FF, Dauletbekov DL, Klein R, et al. AAV8 can induce innate and adaptive immune response in the
primate eye[J]. Mol Ther, 2017, 25(12): 2648-2660.
[30] Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes[J]. Front Immunol, 2021, 12: 675897.
[31] Zaiss AK, Cotter MJ, White LR, et al. Complement is an essential component of the immune response
to adeno-associated virus vectors[J]. J Virol, 2008, 82(6): 2727-2740.
[32] Ertl HCJ. Immunogenicity and
toxicity of AAV gene therapy[J]. Front Immunol, 2022, 13: 975803.
[33] Ertl HCJ. T Cell-mediated immune responses to AAV and AAV vectors[J]. Front Immunol, 2021, 12: 666666.
[34] Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy[J]. Blood, 2013, 122(1): 23-36.
[35] Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against
adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors[J]. Hum Gene Ther, 2010, 21(6): 704-712.
[36] Fitzpatrick Z, Leborgne C, Barbon E, et al. Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector
transduction[J]. Mol Ther Methods Clin
Dev, 2018, 9: 119-129.
[37] Muhuri M, Maeda Y, Ma H, et al. Overcoming innate immune barriers that impede AAV gene
therapy vectors[J]. J Clin Invest, 2021, 131(1):e143780.
[38] Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin
immunity in Duchenne's muscular dystrophy[J]. N Engl J Med, 2010, 363(15): 1429-1437.
[39] Gorovits B, Azadeh M, Buchlis G, et al. Evaluation of cellular immune response to adeno-associated virus-based gene therapy[J]. AAPS J, 2023, 25(3): 47.
[40] George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant[J]. N Engl J Med, 2017, 377(23): 2215-2227.
[41] Li C, He Y, Nicolson S, et
al. Adeno-associated virus capsid antigen presentation is dependent on
endosomal escape[J]. J Clin Invest, 2013, 123(3): 1390-1401.
[42] Martino AT, Basner-Tschakarjan E, Markusic DM, et al. Engineered AAV vector minimizes in vivo targeting of
transduced hepatocytes by capsid-specific CD8+ T cells[J]. Blood, 2013, 121(12): 2224-2233.
[43] Palaschak B, Marsic D, Herzog RW, et al. An immune-competent murine model to study elimination of AAV-transduced hepatocytes by capsid-specific CD8+ T cells[J]. Mol Ther Methods Clin Dev, 2017, 5: 142-152.
[44] Herzog RW. Complexity of
immune responses to AAV transgene products - Example of factor IX[J]. Cell Immunol, 2019, 342: 103658.
[45] Gardner MR, Fetzer I, Kattenhorn LM, et al. Anti-drug antibody responses impair prophylaxis mediated by AAV-delivered HIV-1 broadly neutralizing antibodies[J]. Mol Ther, 2019, 27(3): 650-660.
[46] Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood
coagulation factor IX mediated by adeno-associated viral vector[J]. Nat Med, 1999, 5(1): 56-63.
[47] Fuchs SP, Martinez-Navio JM, Rakasz EG, et al. Liver-directed but not muscle-directed AAV-antibody gene transfer limits humoral immune responses in rhesus
monkeys[J]. Mol Ther Methods Clin
Dev, 2020, 16: 94-102.
[48] Calcedo R, Somanathan S, Qin Q, et al. Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial
for α-1-antitrypsin deficiency[J]. Proc Natl Acad Sci U S A, 2017, 114(7): 1655-1659.
[49] Corti M, Liberati C, Smith BK, et al. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe
disease[J]. Hum Gene Ther Clin Dev, 2017, 28(4): 208-218.
[50] Gorovits B, Clements-Egan A, Birchler M, et
al. Pre-existing antibody: biotherapeutic modality-based review[J]. AAPS J, 2016, 18(2): 311-320.
[51] Chand DH, Zaidman C, Arya K, et al. Thrombotic microangiopathy following onasemnogene
abeparvovec for spinal muscular atrophy: A case series[J]. J Pediatr, 2021, 231: 265-268.
[52] High-dose AAV gene therapy deaths[J]. Nat Biotechnol, 2020, 38(8): 910.
[53] Hordeaux J, Hinderer C, Buza EL, et al. Safe and sustained expression of human iduronidase after
intrathecal administration of adeno-associated
virus serotype 9 in infant rhesus monkeys[J]. Hum Gene Ther, 2019, 30(8): 957-966.
[54] Hordeaux J, Buza EL, Jeffrey B, et al. MicroRNA-mediated inhibition of transgene expression reduces dorsal root
ganglion toxicity by AAV vectors in primates[J]. Sci Transl Med, 2020, 12(569):eaba9188.
[55] Hordeaux J, Buza EL, Dyer C, et al. Adeno-associated virus-induced dorsal root ganglion pathology[J]. Hum Gene Ther, 2020, 31(15-16): 808-818.
[56] Bolt MW, Brady JT, Whiteley LO, et al. Development challenges associated with rAAV-based gene therapies[J]. J Toxicol Sci, 2021, 46(2): 57-68.
[57] Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following
high-dose intravenous administration of an adeno-associated virus vector expressing human SMN[J]. Hum Gene Ther, 2018, 29(3): 285-298.
[58] Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the
race between clearance, tolerance, neutralization, and escape[J]. Annu Rev Virol, 2017, 4(1): 511-534.
[59] Ertl HCJ, High KA. Impact of AAV capsid-specific T-cell responses on design and outcome of clinical gene transfer
trials with recombinant adeno-associated viral vectors: an evolving controversy[J]. Hum Gene Ther, 2017, 28(4): 328-337.
[60] Martino AT, Markusic DM. Immune response mechanisms against AAV vectors in
animal models[J]. Mol Ther Methods Clin
Dev, 2020, 17: 198-208.
[61] Long BR, Sandza K, Holcomb J, et al. The impact of pre-existing
immunity on the non-clinical pharmacodynamics of AAV5-based gene therapy[J]. Mol Ther Methods Clin Dev, 2019, 13: 440-452.
[62] Yang TY, Braun M, Lembke W, et al. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium
industry white paper[J]. Mol Ther Methods Clin Dev, 2022, 26: 471-494.
[63] Wessels U, Zadak M, Reiser A, et al. Immunogenicity testing of therapeutic antibodies in ocular
fluids after intravitreal injection[J]. Bioanalysis, 2018, 10(11): 803-814.
[64] Calcedo R, Chichester JA, Wilson JM. Assessment
of humoral, innate, and T-cell immune responses to adeno-associated virus vectors[J]. Hum Gene Ther Methods, 2018, 29(2): 86-95.
[65] Falese L, Sandza K, Yates B, et al. Strategy to detect pre-existing immunity to AAV gene therapy[J]. Gene Ther, 2017, 24(12): 768-778.
[66] Haar J, Blazevic D, Strobel B, et al. MSD-based assays facilitate a rapid and quantitative serostatus
profiling for the presence of anti-AAV antibodies[J]. Mol Ther Methods Clin Dev, 2022, 25: 360-369.
[67] Tham EL, Shrikant P, Mescher MF. Activation-induced nonresponsiveness: a Th-dependent regulatory checkpoint in the CTL response[J]. J Immunol, 2002, 168(3): 1190-1197.
[68] Vandamme C, Xicluna R, Hesnard L, et al. Tetramer-based enrichment of preexisting anti-AAV8 CD8+ T cells in human donors allows the detection of
a TEMRA subpopulation[J]. Front Immunol, 2019, 10: 3110.
|