[1] The Lancet N. Rare diseases: maintaining momentum [J]. Lancet Neurol, 2022, 21(3): 203-203.
[2] Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics [J]. Nat Nanotechnol, 2021, 16(6): 630-743.
[3] Childs-Disney JL, Yang X, Gibaut QMR, et al. Targeting RNA
structures with small molecules [J]. Nat Rev Drug Discov, 2022, 21(10): 736-762.
[4] Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy [J]. N Engl J Med, 2017, 377(18): 1723-1732.
[5] Nakamura A. Mutation-based therapeutic strategies for duchenne muscular dystrophy: from genetic diagnosis to therapy [J]. J Pers Med, 2019, 9(1): 16-36.
[6] Sun C, Shen L, Zhang Z, et al. Therapeutic strategies for duchenne muscular dystrophy: an update [J]. Genes (Basel), 2020, 11(8): 837-861.
[7] Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: an
emerging area in drug discovery and development [J]. J Clin Med, 2020, 9(6): 2004-2028.
[8] Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets [J]. Nat Rev Drug Discov, 2017, 16(1): 19-34.
[9] Kim Y. Drug Discovery
perspectives of antisense oligonucleotides [J]. Biomol Ther (Seoul), 2023, 31(3): 241-252.
[10] Crooke ST, Baker BF, Crooke RM, et al. Antisense technology: an overview and
prospectus [J]. Nat Rev Drug Discov, 2021, 20(6): 427-453.
[11] Tang Q, Khvorova A. RNAi-based drug design: considerations and
future directions [J]. Nat Rev Drug Discov, 2024, 4(3): 1-24.
[12] Rekić D, Azarov I, Knöchel J, et al. AZD8233 antisense oligonucleotide targeting PCSK9 does not
prolong QT interval [J]. Br J Clin Pharmacol, 2022, 88(11): 4839-4844.
[13] Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy [J]. Nat Neurosci, 2017, 20(4): 497-499.
[14] Zon G. Oligonucleotide
analogues as potential chemotherapeutic agents [J]. Pharm Res, 1988, 5(9): 539-549.
[15] Quemener AM, Centomo ML, Sax SL, et al. Small drugs, huge impact: the extraordinary impact of antisense oligonucleotides in research
and drug development [J]. Molecules, 2022, 27(2): 536-562.
[16] Paunovska K, Loughrey D, Dahlman JE. Drug
delivery systems for RNA therapeutics [J]. Nat Rev Genet, 2022, 23(5): 265-280.
[17] Crooke ST, Witztum JL, Bennett CF, et al. RNA-targeted therapeutics [J]. Cell Metab, 2018, 27(4): 714-739.
[18] Chen S, Heendeniya SN, Le BT, et al. Splice-modulating antisense oligonucleotides as therapeutics for inherited
metabolic diseases [J]. BioDrugs, 2024, 38(2): 177-203.
[19] Shen W, De Hoyos CL, Sun H, et al. Acute hepatotoxicity of 2′ fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with
intracellular protein binding and the loss of DBHS proteins [J]. Nucleic Acids Res, 2018, 46(5): 2204-2217.
[20] Fang L, Xiao L, Jun YW, et al. Reversible 2'-OH acylation
enhances RNA stability [J]. Nat Chem, 2023, 15(9): 1296-1305.
[21] Shen W, De Hoyos CL, Migawa MT, et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index [J]. Nat Biotechnol, 2019, 37(6): 640-650.
[22] Baker YR, Thorpe C, Chen J, et al. An LNA-amide modification that enhances the cell uptake and activity of
phosphorothioate exon-skipping oligonucleotides [J]. Nat Commun, 2022, 13(1): 4036-4047.
[23] Prout J, Tian M, Palladino A, et al. LNA blockers for improved amplification selectivity [J]. Sci Rep, 2023, 13(1): 4858-4871.
[24] Frank DE, Schnell FJ, Akana C, et al. Increased dystrophin production with golodirsen in patients
with Duchenne muscular dystrophy [J]. Neurology, 2020, 94(21): e2270-2282.
[25] Saad FA, Siciliano G, Angelini C. Advances in
dystrophinopathy diagnosis and therapy [J]. Biomolecules, 2023, 13(9): 1319-1333.
[26] Doxakis E. Therapeutic
antisense oligonucleotides for movement disorders [J]. Med Res Rev, 2021, 41(5): 2656-2688.
[27] Kole R, Krainer AR, Altman S. RNA
therapeutics: beyond RNA interference and antisense
oligonucleotides [J]. Nat Rev Drug Discov, 2012, 11(2): 125-140.
[28] Iwamoto N, Butler DCD, Svrzikapa N, et al. Control of phosphorothioate stereochemistry substantially
increases the efficacy of antisense oligonucleotides [J]. Nat Biotechnol, 2017, 35(9): 845-851.
[29] Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy [J]. Nat Rev Dis Primers, 2021, 7(1): 13-54.
[30] Takeda S, Clemens PR, Hoffman EP. Exon-skipping in duchenne muscular dystrophy [J]. J Neuromuscul Dis, 2021, 8(s2): S343-s358.
[31] Mcnally EM, Wyatt EJ. Mutation-based therapy for duchenne muscular dystrophy: antisense treatment arrives in the clinic [J]. Circulation, 2017, 136(11): 979-981.
[32] Mendell JR, Rodino-Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of duchenne muscular dystrophy [J]. Ann Neurol, 2013, 74(5): 637-647.
[33] Heo YA. Golodirsen: first approval [J]. Drugs, 2020, 80(3): 329-333.
[34] Shirley M. Casimersen: first approval [J]. Drugs, 2021, 81(7): 875-879.
[35] Mercuri E, Sumner CJ, Muntoni F, et al. Spinal muscular atrophy [J]. Nat Rev Dis Primers, 2022, 8(1): 52-71.
[36] Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation
study [J]. Lancet, 2016, 388(10063): 3017-3026.
[37] Łusakowska A, Wójcik A, Frączek A, et al. Long-term nusinersen treatment across a wide spectrum of spinal muscular
atrophy severity: a real-world experience [J]. Orphanet J Rare Dis, 2023, 18(1): 230-243.
[38] Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis [J]. N Engl J Med, 2017, 377(2): 162-172.
[39] Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis [J]. Lancet, 2022, 400(10360): 1363-1380.
[40] Kim G, Gautier O, Tassoni-Tsuchida E, et al. ALS genetics: gains, losses, and implications for
future therapies [J]. Neuron, 2020, 108(5): 822-842.
[41] Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies [J]. Lancet Neurol, 2019, 18(2): 211-220.
[42] Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS [J]. N Engl J Med, 2022, 387(12): 1099-1110.
[43] Mccampbell A, Cole T, Wegener AJ, et al. Antisense oligonucleotides extend survival and reverse
decrement in muscle response in ALS models [J]. J Clin Invest, 2018, 128(8): 3558-3567.
[44] Nie T. Eplontersen: First approval [J]. Drugs, 2024, 3(1): 1-6.
[45] Coelho T, Marques WJr, Dasgupta NR, et al. Eplontersen for hereditary transthyretin amyloidosis with
polyneuropathy [J]. JAMA, 2023, 330(15): 1448-1458.
[46] Long JM, Holtzman DM. Alzheimer disease: an update on
pathobiology and treatment strategies [J]. Cell, 2019, 179(2): 312-339.
[47] Wesenhagen KEJ, Tijms BM, Boonkamp L, et al. P-tau subgroups in AD relate to distinct amyloid production and
synaptic integrity profiles [J]. Alzheimers Res Ther, 2022, 14(1): 95-110.
[48] Chang CW, Shao E, Mucke L. Tau: enabler of diverse brain disorders and target of rapidly evolving
therapeutic strategies [J]. Science, 2021, 371(6532): eabb 8255-8281.
[49] Edwards AL, Collins JA, Junge C, et al. Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial [J]. JAMA Neurol, 2023, 80(12): 1344-1352.
[50] Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson′s disease: advances and challenges [J]. Lancet Neurol, 2022, 21(1): 89-102.
[51] Ye H, Robak LA, Yu M, et al. Genetics and pathogenesis of Parkinson′s syndrome [J]. Annu Rev Pathol, 2023, 18(1): 95-121.
[52] Müller T. DNL151, DNL201, and BIIB094: experimental agents for the treatment of Parkinson′s disease [J]. Expert Opin Investig Drugs, 2023, 32(9): 787-792.
[53] Ross CA, Tabrizi SJ. Huntington′s
disease: from molecular pathogenesis to clinical
treatment [J]. Lancet Neurol, 2011, 10(1): 83-98.
[54] Tabrizi SJ, Estevez-Fraga C, Van Roon-Mom WMC, et al. Potential
disease-modifying therapies for Huntington's disease: lessons learned and future opportunities [J]. Lancet Neurol, 2022, 21(7): 645-658.
[55] Mccolgan P, Thobhani A, Boak L, et al. Tominersen in adults with manifest huntington′s disease [J]. N Engl J Med, 2023, 389(23): 2203-2205.
[56] Dindot S V, Christian S, Murphy WJ, et al. An ASO therapy for angelman syndrome that targets an
evolutionarily conserved region at the start of the UBE3A-AS transcript [J]. Sci Transl Med, 2023, 15(688): eabf4077-4088.
[57] Pascual-Gilabert M, Artero R, López-Castel A. The myotonic dystrophy type 1 drug development pipeline: 2022 edition [J]. Drug Discov Today, 2023, 28(3): 103489-103499.
[58] Isom LL, Knupp KG. Dravet syndrome: novel approaches for
the most common genetic epilepsy [J]. Neurotherapeutics, 2021, 18(3): 1524-1534.
|