• 中国核心期刊数据库收录期刊
  • 中文科技期刊数据库收录期刊
  • 中国期刊全文数据库收录期刊
  • 中国学术期刊综合评价数据库统计源期刊等

快速检索引用检索图表检索高级检索

中国医药导刊 ›› 2024, Vol. 26 ›› Issue (11): 1071-1074.

• 监管科学 • 上一篇    下一篇

基于医学本体的智能化监管数据模型构建初探

孙凤宇1, 全旭源2a, 李毅2b, 侯艳2ab3*   

  1. 1.国家药品监督管理局药品审评中心,北京 100076;
    2.北京大学 公共卫生学院生物统计系a,临床医学高等研究院医学信息学中心b,北京 100191;
    3.北京大学肿瘤医院,北京 100142
  • 收稿日期:2024-10-08 修回日期:2024-12-02 出版日期:2024-11-28 发布日期:2024-11-28
  • 基金资助:
    科技部重点研发计划(2021YFF0901401)

Preliminary Exploration of an Intelligent Regulatory Data Model Based on Medical Ontology

  1. 1.Center for Drug Evaluation CDE), National Medical Products Administration NMPA), Beijing 100076, China
    2.Department of Biostatisticsa School of Public Health Medical Informatics Center Institute of Advanced Clinical Medicineb
    Peking University Beijing 100191, China 3.Peking University Cancer Hospital Beijing 100142, China
  • Received:2024-10-08 Revised:2024-12-02 Online:2024-11-28 Published:2024-11-28

摘要:

随着药品研发复杂性和监管要求的提升,监管机构在确保药品全生命周期审评科学性与效率方面面临更多挑战。传统的监管数据管理方法难以应对日益增长的数据量和复杂性。医学本体技术通过标准化处理和整合多源异构数据,逐步应用于药品审评,以提升决策的精准性和科学性。本研究提出基于医学本体的智能化监管数据模型,集成本体工程、机器学习、大数据与人工智能、自动化数据索引与检索以及数据安全技术,旨在优化药品审评中的数据整合与分析。模型设计包括语义数据模型构建与数据分类标注,多源数据整合与处理则涵盖数据融合和自动化索引。该模型在全球药品监管中的应用场景涵盖药品安全监测、审批路径优化、健康数据整合和长期安全性评估。通过探讨医学本体技术在药品研发与审评中的应用,本研究为提高药品审评效率、科学性及数字化监管提供了理论与实践支持。


关键词: 医学本体, 监管审评, 智能化监管, 数据模型, 药品研发

Abstract:

 With the increasing complexity of drug development and rising regulatory demands regulatory agencies are facing more challenges in ensuring the scientific and efficient evaluations throughout drug whole life cycle. Traditional methods of regulatory data management struggle to cope with the growing volume and complexity of data. Medical ontology technology which standardizes and integrates multi-source heterogeneous data has gradually been applied in drug review processes to enhance decision-making precision and scientific accuracy. This study proposes an intelligent regulatory data model based on medical ontology integrating ontology engineering machine learning big data and artificial intelligence automated data indexing and retrieval and data security technologies aiming to optimize data integration and analysis in drug evaluations. The model design includes semantic data modeling and data classification and annotation while multi-source data integration and processing cover data fusion and automated indexing. The application scenarios of this model in global drug supervision include drug safety monitoring approval pathway optimization health data integration and long-term safety assessments. By exploring the application of medical ontology technology in drug development and evaluation this research provides theoretical and practical support for improving the efficiency and scientific validity of drug evaluation and advancing digitalized regulation.


Key words:  , Medical ontology , Regulatory review , Intelligent supervision , Data model , Drug development

中图分类号: