[1] U.S. Food and Drug
Administration. ICH E9 (R1) statistical principles for clinical trials: addendum: estimands and
sensitivity analysis in clinical trials [EB/OL].(2021-05-30)[2024-11-13].https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e9r1-statistical-principles-clinical-trials-addendum-estimands-and-sensitivity-analysis-clinical.
[2] 国家药品监督管理局. 关于适用《E9(R1):临床试验中的估计目标与敏感性分析》国际人用药品注册技术协调会指导原则的公告(2021年第16号) [EB/OL].(2021-01-21)[2024-11-13].https://www.nmpa.gov.cn/yaopin/ypggtg/20210125153350133.html?type=pc&m=.
[3] Han S, Zhou XH. Defining estimands in clinical trials: a unified procedure [J].Stat Med,2023,42(12):1869-1887.
[4] 国家药品监督管理局.关于发布真实世界证据支持药物研发与审评的指导原则(试行)的通告(2020年第1号)[EB/OL].(2020-01-03)[2024-11-13]. https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypqtggtg/20200107151901190.html?type=pc&m=.
[5] U.S. Food and Drug
Administration. Guidance for industry: E2E pharmacovigilance
planning [EB/OL].(2005-04)[2024-11-19].https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e2e-pharmacovigilance-planning.
[6] U.S. Food and Drug
Administration. ICH E6 (R2) Good Clinical Practice: Integrated Addendum to
ICH E6 (R1)[EB/OL].(2018-03)[2024-11-19]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e6r2-good-clinical-practice-integrated-addendum-ich-e6r1.
[7] McConnell S, Stuart EA, Devaney B. The
truncation-by-death problem: what to do in an
experimental evaluation when the outcome is not always defined[J].Eval Rev, 2008,32(2):157-186.
[8] Wang L, Zhou XH, Richardson TS.
Identification and estimation of causal effects with outcomes truncated by
death[J].Biometrika, 2017,104(3): 597-612.
[9] Ding P, Geng Z, Yan W, et al. Identifiability and estimation of causal effects by
principal stratification with outcomes truncated by death[J].Journal of the American Statistical
Association, 2011,106(496):1578-1591.
[10] Tchetgen Tchetgen EJ.
Identification and estimation of survivor average causal effects[J]. Stat Med, 2014,33(21):3601-3628.
[11] Cattaneo MD, Jansson M, Newey WK. Inference in
linear regression models with many covariates and heteroscedasticity[J].Journal of the American Statistical
Association, 2018, 113(523):1350-1361.
[12] Chen Q, Ibrahim JG, Chen MH, et al. Theory and inference for regression models with missing
responses and covariates[J].J Multivariate Anal, 2008,99(6):1302-1331.
[13] Little RJ, Rubin DB. Statistical analysis with missing data [M].John Wiley & Sons, 2019.
[14] Zhao LP, Lipsitz S, Lew D. Regression
analysis with missing covariate data using estimating equations[J].Biometrics, 1996,52(4):1165-1182.
[15] Lipsitz SR, Ibrahim JG, Zhao LP. A weighted
estimating equation for missing covariate data with properties similar to
maximum likelihood[J].Journal of the American Statistical Association, 1999, 94(448):1147-1160.
[16] Seaman SR, White IR. Review of inverse probability weighting for dealing with
missing data[J]. Stat Methods Med Res, 2013,22(3):278-295.
[17] Hogan JW, Lancaster T. Instrumental variables and inverse probability
weighting for causal inference from longitudinal observational studies[J].Stat Methods Med Res, 2004,13(1):17-48.
[18] Chen B, Zhou XH. Doubly robust estimates for binary longitudinal data
analysis with missing response and missing covariates[J].Biometrics, 2011,67(3):830-842.
[19] Carpenter JR, Kenward MG, Vansteelandt S. A
comparison of multiple imputation and doubly robust estimation for analyses
with missing data[J]. Journal of the Royal
Statistical Society Series A: Statistics in Society, 2006,169(3):571-584.
[20] Deng Y, Chang Y, Zhou XH. Causal
Inference with Truncation-by-Death and Unmeasured Confounding[J].ArXiv [preprint], 2021:2109.13623.
[21] Liu LJ, Yang YZ, Shi SF, et al. Effects of hydroxychloroquine on proteinuria in IgA
nephropathy: a randomized controlled trial[J].Am J Kidney Dis, 2019,74(1):15-22.
[22] Kallus N, Mao X. On the role of surrogates in the efficient estimation of
treatment effects with limited outcome data[J].Journal of the Royal Statistical Society Series B: Statistical Methodology, 2024:qkae099.
[23] Chen H, Geng Z, Jia J. Criteria for
surrogate end points[J].Journal of the Royal Statistical Society Series B: Statistical Methodology, 2007,69(5):919-932.
[24] Hu W, Zhou X, Wu P. Identification
and estimation of treatment effects on long-term outcomes in clinical trials with external observational data[J].ArXiv [preprint], 2022:2208.10163.
[25] Rubin DB. Multiple imputation
for nonresponse in surveys [M].John Wiley & Sons, 2004.
[26] Angrist JD, Imbens GW, Rubin DB.
Identification of causal effects using instrumental variables[J].Journal of the American Statistical
Association, 1996, 91(434):444-455.
[27] Lipsitch M, Tchetgen E T, Cohen T. Negative
controls: a tool for detecting confounding and bias in
observational studies[J].Epidemiology, 2010,21(3):383-388.
[28] Luo S, Li W, He Y. Causal inference with outcomes
truncated by death in multiarm studies[J].Biometrics, 2023,79(1):502-513.
[29] Kedagni D. Identifying
treatment effects in the presence of confounded types[J].J Econom, 2023,234(2):479-511.
[30] Wang L, Zhang Y, Richardson TS, et al. Estimation of local treatment effects under the binary
instrumental variable model[J].Biometrika, 2021,108(4):881-894.
[31] McGuinness MB, Kasza J, Karahalios A, et al. A comparison of methods to estimate the survivor average
causal effect in the presence of missing data: a
simulation study[J].BMC Med Res Methodol, 2019,19(1):223.
[32] McGuinness MB, Kasza J, Karahalios A, et al. Correction to: a comparison of methods
to estimate the survivor average causal effect in the presence of missing data: a simulation study[J].BMC Med Res Methodol, 2020,20(1):40.
[33] Shi X, Miao W, Tchetgen ET. A
selective review of negative control methods in epidemiology[J].Curr Epidemiol Rep, 2020,7(4):190-202.
[34] Shi X, Miao W, Nelson JC, et al. Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding[J].J R Stat Soc Series B Stat Methodology, 2020,82(2):521-540.
[35] Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR
reporting[J].Pharmacoepidemiol Drug
Saf, 2009,18(6):427-436.
[36] Hauben M, Zhou XF. Quantitative methods in pharmacovigilance-Focus on signal detection[J].Drug Safety, 2003,26:159-186.
[37] Evans SJ, Waller PC, Davis S. Use of
proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction
reports[J].Pharmacoepidemiol Drug
Saf, 2001,10(6):483-486.
[38] Hou Y, Ye X, Wu G, et al. A comparison of
disproportionality analysis methods in national adverse drug reaction databases
of China[J].Expert Opin Drug Saf, 2014, 13(7):853-857.
[39] Bate A, Lindquist M, Edwards IR, et al. A bayesian neural network method for adverse drug reaction
signal generation[J].Eur J Clin Pharmacol, 1998,54(4):315-321.
[40] 晏声蕾,陈加飞,单雪峰,等. 药物与乳酸酸中毒的药品不良反应信号挖掘与分析[J].中国医院用药评价与分析, 2023,23(11):1387-1390.
[41] Candore G, Juhlin K, Manlik K, et al. Comparison of statistical signal detection methods within
and across spontaneous reporting databases[J].Drug Saf, 2015,38(6):577-587.
[42] Bae JH, Baek YH, Lee JE, et al. Machine learning for detection of safety signals from
spontaneous reporting system data: Example of nivolumab
and docetaxel[J].Front Pharmacol, 2021,11:602365.
[43] Lee JE, Kim JH, Bae JH, et al. Detecting early safety signals of infliximab using machine
learning algorithms in the Korea adverse event reporting system[J].Sci Rep, 2022,12(1):14869.
[44] Noguchi Y, Takaoka M, Hayashi T, et al. Antiepileptic combination therapy with Stevens-Johnson syndrome and toxic epidermal necrolysis: Analysis of a Japanese pharmacovigilance database[J].Epilepsia, 2020,61(9):1979-1989.
[45] Noguchi Y, Tachi T, Teramachi H. Subset
analysis for screening drug-drug interaction signal using pharmacovigilance database[J].Pharmaceutics, 2020,12(8):762.
[46] Noguchi Y, Tachi T, Teramachi H. Comparison
of signal detection algorithms based on frequency statistical model for drug-drug interaction using spontaneous reporting systems[J].Pharm Res,2020,37(5):86.
[47] Lin WJ, Chen JJ. Class-imbalanced classifiers for high-dimensional data[J].Brief Bioinform, 2013,14(1):13-26.
[48] Chen T, Guestrin C. Xgboost: A scalable tree
boosting system[C]//Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, 2016:785-794.
[49] Dimitri GM, Lió P. DrugClust: a machine learning
approach for drugs side effects prediction[J].Comput Biol Chem, 2017,68:204-210.
[50] Wu TY, Jen MH, Bottle A, et al. Ten-year trends in hospital admissions for adverse drug reactions in
England 1999-2009[J].J R Soc Med, 2010,103(6):239-250.
[51] Banda JM, Evans L, Vanguri RS, et al. A curated and standardized adverse drug event resource to
accelerate drug safety research[J].Sci Data, 2016,3:160026.
[52] Li H, Hu T, Xiong Z, et al. ADRNet: a generalized collaborative filtering framework combining clinical
and non-clinical data for adverse drug reaction prediction[C]//Proceedings of the 17th ACM Conference on
Recommender Systems, 2023:682-687.
[53] Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and
biological spaces[J].J Chem Inf Model, 2012,52(12):3284-3292.
[54] Wang F, Deng Y. Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at
Random[J].Mathematics, 2023,11(4):818.
[55] Deng Y, Wang Y, Zhan X, et al. Separable pathway effects of semi-competing risks via multi-state models[J].arXiv preprint arXiv:230615947, 2023.
[56] Dai Q, Li H, Wu P, et al. A generalized
doubly robust learning framework for debiasing post-click conversion rate prediction[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022: 252-262.
[57] Qiu Y, Sun J, Zhou XH. Unveiling the unobservable: causal inference on multiple derived outcomes[J].Journal of the American Statistical
Association, 2023: 1-12.
[58] Yin
S, Zheng X,
Zhang W, et
al. Efficacy and safety of new-generation
Bruton tyrosine kinase inhibitors in chronic lymphocytic leukemia/small
lymphocytic lymphoma: a
systematic review and meta-analysis[J].Ann
Hematol,
2024,103(7):2231-2244. |