[1] Rajkomar A, Dean J, Kohane I. Machine
learning in medicine[J].N Engl J Med,2019,380(14):1347-1358.
[2] Stevens LM, Mortazavi BJ, Deo RC, et al. Recommendations for reporting machine learning analyses in
clinical research[J].Circ Cardiovasc Qual
Outcomes,2020,13(10):782-793.
[3] González-Beltrán A, Li P, Zhao J, et al. From peer-reviewed to peer-reproduced in scholarly publishing: the
complementary roles of data models and workflows in bioinformatics[J].PLoS One,2015,10(7):1-20.
[4] Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges[J].Brief Bioinform,2018,19(6):1236-1246.
[5] Jordan MI, Mitchell TM. Machine learning:trends, perspectives, and prospects[J]. Science,2015,349(6245):255-260.
[6] Hastie T, Tibshirani R, Friedman J. The
elements of statistical learning: data mining, inference, and prediction 2 nd ed[M].New York,NY:Springer,2009.I-XXII:1-745.
[7] Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for
reporting clinical prediction models that use regression or machine learning
methods[J].BMJ,2024,385:1-14.
[8] Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from
fast myocardial perfusion SPECT: a multicenter study[J].JACC Cardiovasc Imaging,2018,11(11):1654-1663.
[9] Bax JJ, van der Bijl P, Delgado V. Machine
learning for electrocardiographic diagnosis of left ventricular early diastolic
dysfunction[J].J Am Coll Cardiol,2018,71(15):1661-1662.
[10] Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional
assessments in 2D echocardiography[J].J Am Coll Cardiol,2016,68(21):2287-2295.
[11] Masetic Z, Subasi A. Congestive heart failure detection using random forest
classifier[J]. Comput Methods
Programs Biomed,2016,130:54-64.
[12] Alizadehsani R, Habibi J, Alizadeh Sani Z, et al. Diagnosing coronary artery disease via data mining
algorithms by considering laboratory and echocardiography features[J].Res Cardiovasc Med,2013,2(3):133-139.
[13] Lahdenoja O, Hurnanen T, Iftikhar Z, et al. Atrial fibrillation detection via accelerometer and
gyroscope of a smartphone[J].IEEE J Biomed Health Inform,2018,22(1):108-118.
[14] Venkatesan P, Yamuna NR. Treatment response classification in randomized clinical
trials: a decision tree approach[J].Indian J Sci Technol, 2013,6(1):3912-3917.
[15] Cheng CA, Chiu HW. An artificial neural network model for the evaluation of
carotid artery stenting prognosis using a national-wide database[J].Conf Proc IEEE Eng Med Biol Soc,2017,2017:2566-2569.
[16] Mortazavi BJ, Downing NS, Bucholz EM, et al. Analysis of machine learning techniques for heart failure
readmissions[J].Circ Cardiovasc Qual
Outcomes,2016,9(6):629-640.
[17] Austin PC, Tu JV, Ho JE, et al. Using methods
from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes[J].J Clin Epidemiol,2013,66(4):398-407.
[18] Kao DP, Lewsey JD, Anand IS, et al. Characterization of subgroups of heart failure patients with
preserved ejection fraction with possible implications for prognosis and
treatment response[J].Eur J Heart Fail,2015,17(9):925-935.
[19] Huang C, Murugiah K, Mahajan S, et al. Enhancing the prediction of acute kidney injury risk after
percutaneous coronary intervention using machine learning techniques: a retrospective cohort study[J].PLoS Med,2018,15(11):1-20.
[20] 谷鸿秋,王俊峰,章仲恒,等.临床预测模型:模型的建立[J].中国循证心血管医学杂志,2019,11([3]1):14-16,23.
[21] 周志华.机器学习[M].北京: 清华大学出版社,2016:24-28.
[22] Hasni N. Critical review on
the contribution of machine learning to health science[J].Web3 Journal: ML
in Health Science,2024,1(2):1-9.
[23] Muhammad G, Sattar F, Ali Z. Insights of
machine learning into medical decision making systems:from research to practice[J].IEEE J Biomed Health Inform,2024,28(4):1801-1802.
|