[1] FDA. Artificial intelligence
in drug manufacturing[EB/OL]. (2023) [2025-02-08]. https://www.FDA.gov/media/165743/download?attachment.
[2] Luo R, Sun L, Xia Y, et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining[J].Brief Bioinform,2022,23(6):bbac409.
[3] Chen H, King FJ, Zhou B, et al. Drug target prediction through deep learning functional
representation of gene signatures[J].Nat Commun,2024,15(1):1853.
[4] Liu R, Wei L, Zhang P. A deep learning framework for drug
repurposing via emulating clinical trials on real-world patient data[J].Nat Mach Intell,2021,3(1):68-75.
[5] Ren F, Aliper A, Chen J, et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical
models[J].Nat Biotechnol, 2025,43(1):63-75.
[6] Olawade DB, Teke J, Fapohunda O, et al. Leveraging artificial intelligence in vaccine development: a narrative review[J].J Microbiol Methods,2024,224:106998.
[7] McCaffrey P. Artificial
intelligence for vaccine design[J].Methods Mol Biol,2022,2412:3-13.
[8] Ozger ZB. A robust protein
language model for SARS-CoV-2 protein-protein interaction network prediction[J].Artif Intell Med,2023,142:102574.
[9] Steiner MC, Gibson KM, Crandall KA. Drug
resistance prediction using deep learning techniques on HIV-1 sequence data[J].Viruses,2020,12(5):560.
[10] Levi R, Zerhouni EG, Altuvia S. Predicting
the spread of SARS-CoV-2 variants: an artificial
intelligence enabled early detection[J].PNAS Nexus,2024,3(1):pgad424.
[11] Thadani NN, Gurev S, Notin P, et al. Learning from prepandemic data to forecast viral escape[J].Nature,2023,622(7984):818-825.
[12] Ma E, Guo X, Hu M, et al. A predictive
language model for SARS-CoV-2 evolution[J].Signal Transduct Target Ther,2024,9(1):353.
[13] Gangwal A, Ansari A, Ahmad I, et al. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities[J].Front Pharmacol,2024,15:1331062.
[14] Zhang K, Yang X, Wang Y, et al. Artificial intelligence in drug development[J].Nat Med,2025,31(1):45-59.
[15] Tingle BI, Tang KG, Castanon M, et al. ZINC-22—a free multi-billion-scale database of tangible compounds for ligand discovery[J].J Chem Inf Model,2023,63(4):1166-1176.
[16] Zhang X, Zhang O, Shen C, et al. Efficient and accurate large library ligand docking with
KarmaDock[J].Nat Comput Sci,2023,3(9):789-804.
[17] Tran-Nguyen VK, Junaid M, Simeon S, et al. A practical
guide to machine-learning scoring for structure-based virtual screening[J].Nat Protoc,2023,18(11):3460-3511.
[18] Chenthamarakshan V, Hoffman SC, Owen CD, et al. Accelerating drug target inhibitor discovery with a deep
generative foundation model[J].Sci Adv,2023,9(25):eadg7865.
[19] Zheng S, Tan Y, Wang Z,et al. Accelerated
rational PROTAC design via deep learning and molecular simulations[J].Nature Machine Intelligence,2022,4:739-748.
[20] Szymczak P, Mozejko M, Grzegorzek T, et al. Discovering highly potent antimicrobial peptides with deep
generative model HydrAMP[J].Nat Commun,2023,14(1):1453.
[21] Pandi A, Adam D, Zare A, et al. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides[J].Nat Commun,2023,14(1):7197.
[22] Vazquez Torres S, Leung PJY, Venkatesh P, et al. De novo design of high-affinity binders of bioactive helical peptides[J].Nature,2024,626(7998):435-442.
[23] Notin P, Rollins N, Gal Y, et al. Machine learning for functional protein design[J]. Nat Biotechnol,2024,42(2):216-228.
[24] Kim YA, Mousavi K, Yazdi A, et al. Computational design of mRNA vaccines[J]. Vaccine,2024,42(7):1831-1840.
[25] Sesterhenn F, Yang C, Bonet J, et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies[J].Science,2020,368(6492):eaay5051.
[26] Cheng Y, Hu H, Dong X, et al. Exploring
transformer model in longitudinal pharmacokinetic/pharmacodynamic analyses and
comparing with alternative natural language processing models[J].J Pharm Sci,2024,113(5):1368-1375.
[27] Wu K, Li X, Zhou Z, et al. Predicting
pharmacodynamic effects through early drug discovery with artificial
intelligence—physiologically based pharmacokinetic (AI-PBPK) modelling[J].Front Pharmacol,2024,15:1330855.
[28] Joseph X, Akhil V, Arathi A, et al. Comprehensive development in organ-on-a-chip technology[J].J Pharm Sci,2022,111(1):18-31.
[29] FDA. FDA's ISTAND Pilot
Program accepts submission of first artificial intelligence-based and digital health technology for neuroscience[EB/OL]. (2024-01-13) [2025-02-16]. https://www.fda.gov/drugs/drug-safety-and-availability/fdas-istand-pilot-program-accepts-submission-first-artificial-intelligence-based-and-digital-health.
[30] Pappalardo F, Russo G, Tshinanu FM, et al. In silico clinical trials: concepts and early adoptions[J].Brief Bioinform,2019,20(5):1699-1708.
[31] Liu X, Liu C, Huang R, et al. Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling[J].Int J Clin Pharmacol Ther,2021,59(2):138-146.
[32] Barrett JS, Goyal RK, Gobburu J, et al. An AI approach to generating MIDD assets across the drug
development continuum[J].AAPS J,2023,25(4):70.
[33] Grieb N, Schmierer L, Kim HU, et al. A digital twin model for evidence-based clinical decision support in multiple myeloma treatment[J].Front Digit Health,2023,5:1324453.
[34] Laubenbacher R, Sluka JP, Glazier JA. Using
digital twins in viral infection[J].Science,2021,371(6534):1105-1106.
[35] Bordukova M, Makarov N, Rodriguez-Esteban R, et al. Generative
artificial intelligence empowers digital twins in drug discovery and clinical
trials[J].Expert Opin Drug Discov,2024,19(1):33-42.
[36] Zou KH, Vigna C, Talwai A, et al. The next horizon of drug development: external control arms and innovative tools to enrich clinical trial
data[J].Ther Innov Regul Sci,2024,58(3):443-455.
[37] Harrer S, Shah P, Antony B, et al. Artificial intelligence for clinical trial design[J].Trends Pharmacol Sci,2019,40(8):577-591.
[38] Zhang B, Zhang L, Chen Q, et al. Harnessing artificial intelligence to improve clinical trial
design[J].Commun Med (Lond),2023,3(1):191.
[39] Jin Q, Wang Z, Floudas CS, et al. Matching patients to clinical trials with large language
models[J].Nat Commun,2024,15(1):9074.
[40] Wang Y, Carter BZ, Li Z, et al. Application of machine learning methods in clinical trials
for precision medicine[J].JAMIA Open,2022,5(1):ooab107.
[41] Mason M, Cho Y, Rayo J, et al. Technologies for
medication adherence monitoring and technology assessment criteria: narrative review[J]. JMIR Mhealth Uhealth,2022,10(3):e35157.
[42] Weissler EH, Naumann T, Andersson T, et al. The role of machine learning in clinical research: transforming the future of evidence generation[J].Trials,2021,22(1):537.
[43] Stehlik J, Schmalfuss C, Bozkurt B, et al. Continuous wearable monitoring analytics predict heart
failure hospitalization: the LINK-HF multicenter study[J].Circ Heart Fail,2020,13(3):e006513.
[44] Avram R, Olgin JE, Kuhar P, et al. A digital biomarker of diabetes from smartphone-based vascular signals[J].Nat Med,2020,26(10):1576-1582.
[45] Eguia H, Sanchez-Bocanegra CL, Vinciarelli F, et al. Clinical decision support and natural language processing in
medicine: systematic literature review[J].J Med Internet Res,2024,26:e55315.
[46] Zhang X, Yan C, Gao C, et al. Predicting
missing values in medical data via XGBoost regression[J].J Healthc Inform Res,2020,4(4):383-394.
[47] WHO. WHO points to consider in
continuous manufacturing of
pharmaceutical products[EB/OL]. (2025-01-07)[2025-02-09]. https://cdn.who.int/media/docs/default-source/medicines/norms-and-standards/current-projects/qas24.957_continuous_manufacturing.pdf?sfvrsn=babd612a_1.
[48] Huang J, O'connor T, Ahmed K, et al. AIChE PD2M advanced process control workshop-moving APC forward in the pharmaceutical industry[J]. Journal of Advanced Manufacturing and
Processing, 2021, 3(1):e10071.
[49] Patil RS, Kulkarni SB, Gaikwad VL. Artificial
intelligence in pharmaceutical regulatory affairs[J].Drug Discov Today,2023,28(9):103700.
[50] Lievano-Martínez FA, Fernández-Ledesma JD, Burgos D, et al. Intelligent process automation: an
application in manufacturing industry[J].Sustainability,2022,14(14):8804.
[51] Kreimeyer K, Menschik D, Winiecki S, et al. Using probabilistic record linkage of structured and
unstructured data to identify duplicate cases in spontaneous adverse event
reporting systems[J].Drug Saf,2017,40(7):571-582.
[52] Salas M, Petracek J, Yalamanchili P, et al. The use of artificial intelligence in pharmacovigilance: a systematic review of the literature [J].Pharmaceut Med,2022,36(5):295-306.
[53] Chavhan A, Uplenchwar PM. AI-driven signal detection in pharmacovigilance: advancements, challenges, and future directions[J].Int J Pharm Pharm Res,2024,30:99-119.
[54] Shamim MA, Shamim MA, Arora P, et al. Artificial intelligence and big data for pharmacovigilance
and patient safety[J].J Med Surg Public Health,2024,3:100139.
[55] FDA. CBER biologics
effectiveness and safety (BEST) system[EB/OL]. (2022-03-14) [2025-02-16]. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/cber-biologics-effectiveness-and-safety-best-system#:~:text=The%20Biologics%20Effectiveness%20and%20Safety%20%28BEST%29%20System%20was,and%20infrastructure%20to%20conduct%20surveillance%20and%20epidemiologic%20studies.
[56] Ball R, Dal Pan G. "Artificial intelligence" for
pharmacovigilance: ready for prime time?[J].Drug Saf,2022,45(5):429-438.
[57] Kreimeyer K, Dang O, Spiker J, et al. Feature engineering and machine learning for causality
assessment in pharmacovigilance: lessons learned from
application to the FDA adverse event reporting system[J].Comput Biol Med,2021,135:104517.
[58] Sorbello A ,Hasan R, Francis H, et al. A novel natural language processing and machine learning
classifier that streamlines extracting drug-adverse event data from literature reports[EB/OL].[2025-02-15].https://www.fda.gov/media/142029/download.
[59] 中华人民共和国国家互联网信息办公室.中华人民共和国网络安全法[EB/OL]. (2016-11-07) [2025-02-15].https://www.cac.gov.cn/2016-11/07/c_1119867116.htm.
[60] 中华人民共和国国家互联网信息办公室.中华人民共和国数据安全法[EB/OL]. (2021-06-11) [2025-02-15].https://www.cac.gov.cn/2021-06/11/c_1624994566919140.htm.
[61] 中华人民共和国国家互联网信息办公室.生成式人工智能服务管理暂行办法[EB/OL]. (2023-07-13) [2025-02-15].https://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm.
[62] 中华人民共和国科学技术部.《新一代人工智能伦理规范》发布[EB/OL]. (2021-09-26) [2025-02-15].https://www.most.gov.cn/kjbgz/202109/t20210926_177063.html?ref=salesforce-research.
[63] 国家药品监督管理局.国家药监局启动中国药品监管科学行动计划[EB/OL].(2019-04-30)[2025-02-15].https://www.nmpa.gov.cn/yaowen/ypjgyw/zhyw/20190430213401392.html.
[64] 国家药品监督管理局.国家药监局关于印发《国家药品监督管理局关于加快推进药品智慧监管的行动计划》的通知[EB/OL].(2019-05-24) [2025-02-15].https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjzh/20190524
175201644.html.
[65] 国家药品监督管理局.“十四五”国家药品安全及促进高质量发展规划印发[EB/OL]. (2021-12-30) [2025-02-15]. https://www.nmpa.gov.cn/yaowen/ypjgyw/zhyw/20211230145247117.html.
[66] 国家药品监督管理局. 国家药监局关于印发《药品监管网络安全与信息化建设“十四五”规划》的通知[EB/OL]. (2022-05-11) [2025-02-15].https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjzh/20220511110329171.html.
[67] 国家药品监督管理局.国家药监局综合司关于印发药品监管人工智能典型应用场景清单的通知[EB/OL]. (2024-06-18) [2025-02-15].https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjzh/20240618144318144.html.
[68] FDA. FDA’s technology modernization action plan[EB/OL]. (2019-09-17) [2025-02-16].https://www.fda.gov/about-fda/reports/fdas-technology-modernization-action-plan.
[69] FDA. Data modernization action
plan[EB/OL]. (2021-03-03) [2025-02-16]. https://www.fda.gov/about-fda/reports/data-modernization-action-plan.
[70] FDA. Considerations for the
use of artificial intelligence to support regulatory decision-making for drug and biological products[EB/OL]. (2025-01-06) [2025-02-16].https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological.
[71] Ahluwalia K, Abernathy MJ, Beierle J, et al. The future of CMC regulatory submissions: streamlining activities using structured content and data
management[J].J Pharm Sci,2022,111(5):1232-1244.
[72] Yu LX, Raw A, Wu L, et al. FDA's new
pharmaceutical quality initiative: knowledge-aided assessment & structured applications[J].Int J Pharm X,2019,1:100010.
[73] Wu L, Gray M, Dang O, et al. RxBERT: Enhancing drug labeling
text mining and analysis with AI language modeling[J]. Exp Biol Med (Maywood),2023,248(21):1937-1943.
[74] EMA. Multi-annual AI workplan 2023-2028[EB/OL]. (2023-11) [2025-02-09]. https://www.ema.europa.eu/system/files/documents/work-programme/2023-12_ai-multiannual-workplan_a4_en.pdf.
[75] EMA. Reflection paper on the
use of Artificial Intelligence (AI) in medicinal product lifecycle[EB/OL]. (2024-09-09) [2025-02-09]. https://www.ema.europa.eu/system/files/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle-en.pdf.
[76] EMA. Preliminary QIG
considerations regarding pharmaceutical process models [EB/OL]. (2024-02-22) [2025-02-09]. https://www.ema.europa.eu/en/documents/scientific-guideline/preliminary-qig-considerations-regarding-pharmaceutical-process-models_en.pdf.
[77] EMA. Guiding principles on the
use of large language models in regulatory science and for medicines regulatory
activities[EB/OL]. (2024-08-29) [2025-02-09]. https://www.ema.europa.eu/en/documents/other/guiding-principles-use-large-language-models-regulatory-science-medicines-regulatory-activities_en.pdf.
[78] EMA. AI and digitalisation at
EMA[EB/OL]. [2025-02-09]. https://www.ema.europa.eu/en/documents/presentation/presentation-artificial-intelligence-and-digitalisation-ema-joaquim-jornet-florence-butlen_en.pdf.
[79] EMA. HMA-EMA joint big data taskforce phase Ⅱreport: ‘Evolving Data-Driven Regulation’[EB/OL]. (2023-09-23) [2025-02-09]. https://www.ema.europa.eu/en/documents/other/hma-ema-joint-big-data-taskforce-phase-ii-report-evolving-data-driven-regulation_en.pdf.
|