[1] 刘荣,刘渠,王斐, 等.预后控制外科:从理论到实践[J].科学通报,2019,64(11):12.
[2] Morris MX, Rajesh A, Asaad M, et al. Deep learning applications in surgery: current uses and future directions[J].American Surgeon, 2023,89(1):36-42.
[3] Ward TM, Mascagni P, Ban Y, et al. Computer vision in surgery[J].Surgery,2021,169(5):1253-1256.
[4] Gumbs AA, Grasso V, Bourdel N. et al. The
advances in computer vision that are enabling more autonomous actions in
surgery: a systematic review of the literature[J]. Sensors (Basel),2022,22:4918.
[5] Choi B, Jo K, Choi S, et al. Surgical-tools detection based on Convolutional Neural Network in
laparoscopic robot-assisted surgery[C].39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). South Korea: IEEE, 2017.
[6] Hussain M. YOLOv1 to v8: unveiling each variant: a comprehensive review
of YOLO[J].IEEE Access,2024,12(12):42816-42833.
[7] Namazi B, Sankaranarayanan G, Devarajan V. A
contextual detector of surgical tools in laparoscopic videos using deep
learning[J].Surg Endosc,2022,36(1):679-688.
[8] Tokuyasu T, Iwashita Y, Matsunobu Y, et al. Development of an artificial intelligence system using deep
learning to indicate anatomical landmarks during laparoscopic cholecystectomy[J].Surg Endosc,2021,35(4):1651-1658.
[9] Mascagni P, Vardazaryan A, Alapatt D. et al.
Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic
cholecystectomy using deep learning[J].Ann Surg,2022,275(5):955-961.
[10] Owen D, Grammatikopoulou M, Luengo I, et al. Automated identification of critical structures in
laparoscopic cholecystectomy[J].Int J Comput Assist Radiol Surg, 2022,17(12):2173-2181.
[11] Nakanuma H, Endo Y, Fujinaga A, et al. An intraoperative artificial intelligence system identifying
anatomical landmarks for laparoscopic cholecystectomy: a prospective clinical feasibility trial (J-SUMMIT-C-01)[J].Surg Endosc,2023,37(3):1933-1942.
[12] Tomioka K, Aoki T, Kobayashi N, et al. Development of a novel artificial intelligence system for
laparoscopic hepatectomy[J].Anticancer Res,2023,43(11):5235-5243.
[13] 张珂诚,乔治,杨力,等.计算机视觉人工智能技术在腹腔镜胃癌根治术中对器械和脏器的检测识别:一项多中心临床研究[J].中华胃肠外科杂志,2024,27(5):464-470.
[14] Quero G, Mascagni P, Kolbinger FR, et al. Artificial intelligence in colorectal cancer surgery: present and future perspectives[J].Cancers,2022,14(15):3803.
[15] Mascagni P, Alapatt D, Urade T, et al. A computer vision platform to automatically locate critical
events in surgical videos: documenting safety in
laparoscopic cholecystectomy[J].Ann Surg,2021,274(1):e93-e95.
[16] Mascagni P, Alapatt D, Laracca GG, et
al. Multicentric validation of EndoDigest: a computer vision
platform for video documentation of the critical view of safety in laparoscopic
cholecystectomy[J].Surg Endosc,2022,36(11):8379-8386.
[17] Namazi B, Iyengar N, Hasan S, et al. AI for automated detection of the establishment of critical
view of safety in laparoscopic cholecystectomy videos[J].Journal of the American College of Surgeons,2020,231(4):e48.
[18] Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during
laparoscopic cholecystectomy[J].Ann Surg,2022,276(2):363-369.
[19] Zhang B, Goel B, Sarhan MH, et al. Surgical workflow recognition with temporal convolution and
transformer for action segmentation[J].Int J Comput Assist Radiol Surg,2023,18(4):785-794.
[20] Shinozuka K, Turuda S, Fujinaga A, et al. Artificial intelligence software available for medical
devices: surgical phase recognition in laparoscopic
cholecystectomy[J].Surg Endosc,2022,36(10):7444-7452.
[21] Eckhoff JA, Ban Y, Rosman G, et al. TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic
sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy[J].Surg Endosc,2023,37(5):4040-4053.
[22] Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time automatic surgical phase recognition in laparoscopic
sigmoidectomy using the convolutional neural network-based deep learning approach[J].Surg Endosc,2020,34(11):4924-4931.
[23] Bodenstedt S, Wagner M, Mündermann L, et al. Prediction of laparoscopic procedure duration using
unlabeled, multimodal sensor data[J].Int J Comput Assist Radiol Surg,2019,14(6):1089-1095.
[24] Twinanda AP, Yengera G, Mutter D, et al. RSDNet: learning to predict
remaining surgery duration from laparoscopic videos without manual annotations[J].IEEE Trans Med Imaging,2019,38(4):1069-1078.
[25] 花苏榕,王智弘,王晶,等.深度学习技术识别纱布在腹腔镜胰腺手术中的应用价值[J]. 中华消化外科杂志,2021,20(12):1324-1330.
[26] Lai SL, Chen CS, Lin BR, et al. Intraoperative detection of surgical gauze using deep
convolutional neural network[J]. Ann Biomed Eng,2023,51(2):352-362.
[27] 中国政府网. 中共中央办公厅
国务院办公厅印发《关于进一步完善医疗卫生服务体系的意见》
[EB/OL].(2023-03-23)[2024-08-01].https://www.gov.cn/gongbao/content/2023/content_5750620.htm.
[28] 北京市发展和改革委员会.《北京市推动“人工智能+”行动计划(2024—2025年)》发布[EB/OL].(2024-07-27)[2024-08-01].https://fgw.beijing.gov.cn/gzdt/fgzs/tpxw/202407/t20240731_3763374.htm.
|