[1] Hayden MR, Ma Y. Molecular genetics of human lipoprotein lipase deficiency[J]. Mol Cell Biochem, 1992, 113(2): 171-176.
[2] Beigneux AP, Allan CM, Sandoval NP, et al. Lipoprotein lipase is active as a monomer[J]. Proc Natl Acad Sci U S A, 2019, 116(13): 6319-6328.
[3] Lookene A, Zhang L, Hultin M, et al. Rapid subunit exchange in dimeric lipoprotein lipase and
properties of the inactive monomer[J]. J Biol Chem, 2004, 279(48): 49964-49972.
[4] Wong H, Davis RC, Thuren T, et al. Lipoprotein lipase domain function[J]. J Biol Chem, 1994, 269(14): 10319-10323.
[5] Wong H, Yang D, Hill JS, et al. A molecular biology-based approach
to resolve the subunit orientation of lipoprotein lipase[J]. Proc Natl Acad Sci U S A, 1997, 94(11): 5594-5598.
[6] Saxena U, Klein MG, Goldberg IJ. Metabolism
of endothelial cell-bound lipoprotein lipase. Evidence for heparan sulfate proteoglycan-mediated internalization and recycling[J]. J Biol Chem, 1990, 265(22): 12880-12886.
[7] Fisher EA. GPIHBP1: lipoprotein lipase’s ticket to ride[J]. Cell Metab, 2010, 12(1): 1-2.
[8] Santamarina-Fojo S, Dugi KA. Structure, function and role of lipoprotein lipase in lipoprotein metabolism [J]. Curr Opin Lipidol, 1994, 5(2): 117-125.
[9] Mead JR, Irvine SA, Ramji DP. Lipoprotein
lipase: structure, function, regulation, and
role in disease [J]. J Mol Med (Berl), 2002, 80(12): 753-769.
[10] Sparkes RS, Zollman S, Klisak I, et al. Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase
to 15q21[J]. Genomics, 1987, 1(2): 138-144.
[11] Gimble JM, Hua X, Wanker F, et al. In vitro and in
vivo analysis of murine lipoprotein lipase gene promoter: tissue-specific expression[J]. Am J Physiol, 1995, 268(2 Pt 1): E213-E218.
[12] Nakshatri H, Nakshatri P, Currie RA. Interaction
of Oct-1 with TFIIB. Implications for a novel response elicited through the
proximal octamer site of the lipoprotein lipase promoter[J]. J Biol Chem, 1995, 270(33): 19613-19623.
[13] Yang WS, Nevin DN, Peng R, et al. A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined
hyperlipidemia and low LPL activity[J]. Proc Natl Acad Sci U S A, 1995, 92(10): 4462-4466.
[14] Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage
lipoprotein lipase: potential role of PPARs[J]. Diabetes, 2001, 50(3): 660-666.
[15] Zhang Y, Repa JJ, Gauthier K, et al. Regulation of lipoprotein lipase by the oxysterol receptors, LXRalpha and LXRbeta[J]. J Biol Chem, 2001, 276(46): 43018-43024.
[16] Currie RA, Eckel RH. Characterization of a high affinity octamer transcription
factor binding site in the human lipoprotein lipase promoter[J]. Arch Biochem Biophys, 1992, 298(2): 630-639.
[17] Morin CL, Schlaepfer IR, Eckel RH. Tumor
necrosis factor-alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes[J]. J Clin Invest, 1995, 95(4): 1684-1689.
[18] Vannier C, Ailhaud G. Biosynthesis of lipoprotein lipase in cultured mouse
adipocytes. II. Processing, subunit assembly, and intracellular transport[J]. J Biol Chem, 1989, 264(22): 13206-13216.
[19] Sundberg EL, Deng Y, Burd CG. Syndecan-1 mediates sorting of soluble lipoprotein lipase with sphingomyelin-rich membrane in the Golgi apparatus[J]. Dev Cell, 2019, 51(3): 387-398.
[20] Ben-Zeev O, Stahnke G, Liu
G, et al. Lipoprotein lipase and hepatic lipase: the role of asparagine-linked
glycosylation in the expression of a functional enzyme[J]. J Lipid Res, 1994, 35(9): 1511-1523.
[21] Zhang L, Lookene A, Wu G, et al. Calcium triggers folding of lipoprotein lipase into active
dimers[J]. J Biol Chem, 2005, 280(52): 42580-42591.
[22] Merkel M, Eckel RH, Goldberg IJ.
Lipoprotein lipase: genetics, lipid uptake, and regulation[J]. J Lipid Res, 2002, 43(12): 1997-2006.
[23] Wittekoek ME, Pimstone SN, Reymer PW, et al. A common mutation in the lipoprotein lipase gene (N291S) alters the lipoprotein phenotype and risk for
cardiovascular disease in patients with familial hypercholesterolemia[J]. Circulation, 1998, 97(8): 729-735.
[24] Wittrup HH, Tybjaerg-Hansen A, Steffensen R, et al. Mutations in the lipoprotein lipase gene associated with
ischemic heart disease in men. The Copenhagen city heart study[J]. Arterioscler Thromb Vasc Biol, 1999, 19(6): 1535-1540.
[25] Gilbert B, Rouis M, Griglio S,et al. Lipoprotein lipase (LPL) deficiency: a new patient
homozygote for the preponderant mutation Gly188Glu in the human LPL gene and
review of reported mutations: 75% are clustered in
exons 5 and 6[J]. Ann Genet, 2001, 44(1): 25-32.
[26] Barg E. Polymorphisms of
lipoprotein lipase gene and their participation in metabolic processes[J]. Pediatr Endocrinol Diabetes Metab, 2011, 17(2): 107-112.
[27] Sagoo GS, Tatt I, Salanti G, et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis[J]. Am J Epidemiol, 2008, 168(11): 1233-1246.
[28] Gehrisch S. Common mutations
of the lipoprotein lipase gene and their clinical significance[J]. Curr Atheroscler Rep, 1999, 1(1): 70-78.
[29] Smith LC, Pownall HJ, Gotto AM Jr. The plasma
lipoproteins: structure and metabolism[J]. Annu Rev Biochem, 1978, 47: 751-757.
[30] Wang CS. Structure and
functional properties of apolipoprotein C-II[J]. Prog Lipid Res, 1991, 30(2-3): 253-258.
[31] Buttet M, Poirier H, Traynard V, et al. Deregulated lipid sensing by intestinal CD36 in diet-induced hyperinsulinemic obese mouse model[J]. PLoS One, 2016, 11(1): e0145626.
[32] McIlhargey TL, Yang Y, Wong H, et al. Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase[J]. J Biol Chem, 2003, 278(25): 23027-23035.
[33] Fojo SS, de Gennes JL, Beisiegel U, et al. Molecular genetics of apoC-II and lipoprotein lipase deficiency[J]. Adv Exp Med Biol, 1991, 285: 329-333.
[34] Ohno M, Ishibashi S, Nakao K, et al. A neonatal case of apolipoprotein C-II deficiency[J]. Eur J Pediatr, 1989, 148(6): 550-552.
[35] Tian L, Xu Y, Fu M, et al. Influence of
apolipoproteinCII concentrations on HDL subclass distribution[J]. J Atheroscler Thromb, 2009, 16(5): 611-620.
[36] Jong MC, Hofker MH, Havekes LM. Role of
ApoCs in lipoprotein metabolism: functional differences
between ApoC1, ApoC2, and ApoC3[J]. Arterioscler Thromb Vasc Biol, 1999, 19(3): 472-484.
[37] Shachter NS, Hayek T, Leff T, et al. Overexpression of apolipoprotein CII causes
hypertriglyceridemia in transgenic mice[J]. J Clin Invest, 1994, 93(4): 1683-1690.
[38] Kei AA, Filippatos TD, Tsimihodimos V, et al. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease[J]. Metabolism, 2012, 61(7): 906-921.
[39] Jong MC, Rensen PC, Dahlmans VE, et al. Apolipoprotein C-III deficiency
accelerates triglyceride hydrolysis by lipoprotein lipase in wild-type and apoE knockout mice[J]. J Lipid Res, 2001, 42(10): 1578-1585.
[40] D'Erasmo L, Di Costanzo A, Gallo A, et al. ApoCIII: A multifaceted protein
in cardiometabolic disease[J]. Metabolism, 2020, 113: 154395.
[41] Lai CQ, Parnell LD, Ordovas JM. The
APOA1/C3/A4/A5 gene cluster, lipid metabolism and
cardiovascular disease risk[J]. Curr Opin Lipidol, 2005, 16(2): 153-166.
[42] Giammanco A, Spina R, Cefalù AB, et al. APOC-III: a gatekeeper in controlling triglyceride
metabolism[J]. Curr Atheroscler Rep, 2023, 25(3): 67-76.
[43] Gordts PL, Nock R, Son NH, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors[J]. J Clin Invest, 2016, 126(8): 2855-2866.
[44] Aalto-Setälä K, Fisher EA, Chen X, et al. Mechanism of
hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein
fractional catabolic rate associated with increased apo CIII and reduced apo E
on the particles[J]. J Clin Invest, 1992, 90(5): 1889-1900.
[45] Taskinen MR, Borén J. Why is apolipoprotein CIII emerging as a novel therapeutic
target to reduce the brden of cardiovascular disease?[J]. Curr Atheroscler Rep, 2016, 18(10): 59.
[46] O'Brien PJ, Alborn WE, Sloan JH, et al. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very
low concentrations compared with other apolipoproteins[J]. Clin Chem, 2005, 51(2): 351-359.
[47] Alborn WE, Johnson MG, Prince MJ, et al. Definitive N-terminal protein sequence and further characterization of the novel
apolipoprotein A5 in human serum[J]. Clin Chem, 2006, 52(3): 514-517.
[48] Lookene A, Beckstead JA, Nilsson S, et al. Apolipoprotein A-V-heparin interactions: implications for plasma
lipoprotein metabolism[J]. J Biol Chem, 2005, 280(27): 25383-25387.
[49] Nilsson SK, Heeren J, Olivecrona G, et al. Apolipoprotein A-V; a potent triglyceride reducer[J]. Atherosclerosis, 2011, 219(1): 15-21.
[50] Marçais C, Verges B, Charrière S, et al. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment[J]. J Clin Invest, 2005, 115(10): 2862-2869.
[51] Young SG, Davies BS, Voss CV, et al. GPIHBP1, an endothelial cell
transporter for lipoprotein lipase[J]. J Lipid Res, 2011, 52(11): 1869-1884.
[52] Gin P, Yin L, Davies BS, et
al. The acidic domain of GPIHBP1 is important for the binding of lipoprotein
lipase and chylomicrons[J]. J Biol Chem, 2008, 283(43): 29554-29562.
[53] Beigneux AP, Davies BS, Gin P, et al. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing
of chylomicrons[J]. Cell Metab, 2007, 5(4): 279-291.
[54] Beigneux AP, Davies BS, Tat S, et al. Assessing the role of the glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) three-finger domain in binding lipoprotein lipase[J]. J Biol Chem, 2011, 286(22): 19735-19743.
[55] Wen Y, Chen YQ, Konrad RJ. The
regulation of triacylglycerol metabolism and lipoprotein lipase activity[J]. Adv Biol (Weinh), 2022, 6(10): e2200093.
[56] Li J, Li L, Guo D, et al. Triglyceride
metabolism and angiopoietin-like proteins in lipoprotein lipase regulation[J]. Clin Chim Acta, 2020, 503: 19-34.
[57] Kumari A, Grønnemose AL, Kristensen KK, et al. Inverse effects of APOC2 and ANGPTL4 on the conformational
dynamics of lid-anchoring structures in lipoprotein lipase[J]. Proc Natl Acad Sci U S A, 2023, 120(18): e2221888120.
[58] Sylvers-Davie KL, Davies BSJ. Regulation
of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8[J]. Am J Physiol Endocrinol Metab, 2021, 321(4): E493-E508.
[59] Lee EC, Desai U, Gololobov G, et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL)[J]. J Biol Chem, 2009, 284(20): 13735-13745.
[60] Sonnenburg WK, Yu D, Lee EC, et al. GPIHBP1
stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4[J]. J Lipid Res, 2009, 50(12): 2421-2429.
[61] Shetty SK, Walzem RL, Davies BSJ. A novel
NanoBiT-based assay monitors the interaction between lipoprotein lipase and
GPIHBP1 in real time[J]. J Lipid Res, 2020, 61(4): 546-559.
[62] Doolittle MH, Ehrhardt N, Péterfy M. Lipase
maturation factor 1: structure and role in
lipase folding and assembly[J]. Curr Opin Lipidol, 2010, 21(3): 198-203.
[63] Hosseini M, Ehrhardt N, Weissglas-Volkov D, et al. Transgenic
expression and genetic variation of Lmf1 affect LPL activity in mice and humans[J]. Arterioscler Thromb Vasc Biol, 2012, 32(5): 1204-1210.
[64] Péterfy M, Ben-Zeev O, Mao HZ, et al. Mutations in
LMF1 cause combined lipase deficiency and severe hypertriglyceridemia[J]. Nat Genet, 2007, 39(12): 1483-1487.
[65] Cefalù AB, Noto D, Arpi ML, et al. Novel LMF1 nonsense mutation in a patient with severe
hypertriglyceridemia[J]. J Clin Endocrinol Metab, 2009, 94(11): 4584-4590.
[66] Simha V.Management of
hypertriglyceridemia[J]. BMJ, 2020, 371: m3109.
[67] Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current cinical
applications of in vivo gene therapy with AAVs[J]. Mol Ther, 2021, 29(2): 464-488.
[68] Ylä-Herttuala S. Endgame: glybera finally
recommended for approval as the first gene therapy drug in the European union[J]. Mol Ther, 2012, 20(10): 1831-1832.
[69] Senior M. After Glybera's
withdrawal, what's next for gene therapy?[J]. Nat Biotechnol, 2017, 35(6): 491-492.
[70] Wierzbicki AS, Viljoen A. Alipogene tiparvovec: gene
therapy for lipoprotein lipase deficiency[J]. Expert Opin Biol Ther, 2013, 13(1): 7-10.
[71] Rip J, Nierman MC, Ross CJ, et al. Lipoprotein lipase S447X: a
naturally occurring gain-of-function mutation[J]. Arterioscler Thromb Vasc Biol, 2006, 26(6): 1236-1245.
[72] Carpentier AC, Frisch F, Labbé SM, et al. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial
chylomicron metabolism in lipoprotein lipase-deficient patients[J]. J Clin Endocrinol Metab, 2012, 97(5): 1635-1644.
[73] Yuan C, Xu Y, Lu G, et al. AAV-mediated hepatic LPL expression ameliorates severe
hypertriglyceridemia and acute pancreatitis in Gpihbp1 deficient mice and rats[J]. Mol Ther, 2023,32(1):59-73.
[74] 侯田田, 马思思,
吴小兵,
等. 基因治疗药物AAV5-脂蛋白脂酶变异体在小鼠体内的毒性研究
[J]. 中国药物警戒, 2023, 20(1): 19-26.
[75] 侯田田, 夏艳, 潘东升,
等. 基因治疗药物AAV5-脂蛋白脂酶变异体在食蟹猴体内的毒性研究 [J]. 中国药物警戒, 2023, 20(1): 27-33.
[76] Witztum JL, Gaudet D, Freedman SD, et al. Volanesorsen and triglyceride levels in familial
chylomicronemia syndrome[J]. N Engl J Med, 2019, 381(6): 531-542.
[77] Kolovou G, Kolovou V, Katsiki N. Volanesorsen: A new era in the treatment of severe hypertriglyceridemia[J]. J Clin Med, 2022, 11(4):982.
[78] Prohaska TA, Alexander VJ, Karwatowska-Prokopczuk E, et al. APOC3 inhibition
with volanesorsen reduces hepatic steatosis in patients with severe
hypertriglyceridemia[J]. J Clin Lipidol, 2023, 17(3): 406-411.
[79] Gouni-Berthold I, Schwarz J, Berthold HK. Updates in drug treatment of severe
hypertriglyceridemia[J]. Curr Atheroscler Rep, 2023, 25(10): 701-709.
[80] Tardif JC, Karwatowska-Prokopczuk E, Amour ES, et al. Apolipoprotein C-III reduction
in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk[J]. Eur Heart J, 2022, 43(14): 1401-1412.
[81] Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense
oligonucleotides[J]. N Engl J Med, 2017, 377(3): 222-232.
[82] Bergmark BA, Marston NA, Bramson CR, et al. Effect of vupanorsen on non-high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70[J]. Circulation, 2022, 145(18): 1377-1386.
[83] Agrawal N, Dasaradhi PV, Mohmmed A, et al. RNA interference: biology, mechanism, and applications[J]. Microbiol Mol Biol Rev, 2003, 67(4): 657-685.
[84] Clifton P, Sullivan D, Baker J, et al. Abstract 10357: ARO-APOC3, an investigational RNAi therapeutic, shows similar efficacy and safety in genetically confirmed FCS and
non-FCS participants with severe hypertriglyceridemia[J]. Circulation,2021, 144(Suppl_1): A10357-A.
[85] Vasas S, Azizad M, Clifton P, et al. Abstract 17091: ARO-APOC3, an investigational RNAi therapeutic, silences APOC3 and reduces atherosclerosis-associated lipoproteins in patients with mixed dyslipidemia: MUIR study results[J]. Circulation,2023, 148(Suppl_1): A17091-A.
[86] Watts GF, Gaudet D, Alatmirano D, et al. Abstract 17120: ARO-ANG3, an investigational RNAi therapeutic, silences the expression of ANGPTL3 and decreases atherogenic
lipoproteins in patients with mixed dyslipidemia: ARCHES-2 study results[J]. Circulation,2023, 148(Suppl_1): A17120-A.
[87] Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for homozygous familial hypercholesterolemia[J]. N Engl J Med, 2020, 383(8): 711-720.
[88] RRosenson RS, Gaudet D, Ballantyne CM, et al. Evinacumab in severe hypertriglyceridemia with or without
lipoprotein lipase pathway mutations: a phase 2 randomized
trial[J]. Nat Med, 2023, 29(3): 729-737.
[89] Huynh K. Dual apoC-II mimetic and apoC-III antagonist for hypertriglyceridaemia[J]. Nat Rev Cardiol, 2020, 17(4): 201.
|