[1] Dizon DS, Kamal AH. Cancer statistics 2024: all
hands on deck[J]. Ca-Cancer J Clin, 2024, 74(1): 8-9.
[2] Yu WQ, Shevtsov M, Chen XC, et al. Advances in aggregatable nanoparticles for tumor-targeted drug delivery[J]. Chinese Chem Lett, 2020, 31(6): 1366-1374.
[3] Qiao L, Han MS, Gao SJ, et al. Research progress on nanotechnology for delivery of active
ingredients from traditional Chinese medicines[J]. J Mater Chem B, 2020, 8(30): 6333-6351.
[4] Chen HM, Zhang WZ, Zhu GZ, et al. Rethinking cancer nanotheranostics[J]. Nat Rev Mater, 2017, 2(7): 17024.
[5] Liu R, Luo C, Pang ZQ, et al. Advances of
nanoparticles as drug delivery systems for disease diagnosis and treatment[J]. Chinese Chem Lett, 2023, 34(2): 107518.
[6] Cheng HY, Hu H, Li G, et al. Calcium titanate
micro-sheets scaffold for improved cell viability and osteogenesis[J]. Chem Eng J, 2020, 389: 124400.
[7] Karaosmanoglu S, Zhou MJ, Shi BY, et al. Carrier-free nanodrugs for safe and effective cancer treatment[J]. J Control Release, 2021, 329: 805-832.
[8] Wang YQ, Li SM, Wang XH, et al. Smart
transformable nanomedicines for cancer therapy[J]. Biomaterials, 2021, 271: 120737.
[9] Ge W, Wang L, Zhang JY, et al. Self-assembled nanoparticles as cancer therapeutic agents[J]. Adv Mater Interfaces, 2021, 8(1): 2001602.
[10] Qiao L, Yang HS, Gao SJ, et al. Research progress on self-assembled nanodrug delivery systems[J]. J Mater Chem B, 2022, 10(12): 1908-1922.
[11] Fan LL, Zhang BC, Xu AC, et al. Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy[J]. Mol Pharmaceut, 2018, 15(6): 2466-2478.
[12] Iyer AS, Paul K. Self-assembly: a review of scope and
applications[J]. Iet Nanobiotechnol, 2015, 9(3): 122-135.
[13] Whitesides GM, Grzybowski B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421.
[14] Song JB, Zhou JJ, Duan HW. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and
traceable intracellular drug delivery[J]. J Am Chem Soc, 2012, 134(32): 13458-13469.
[15] Zhang SJ, Pelligra CI, Feng XD, et al. Directed assembly of hybrid nanomaterials and nanocomposites[J]. Adv Mater, 2018, 30(18): 1705794.
[16] Webber MJ, Appel EA, Meijer EW, et al. Supramolecular biomaterials[J]. Nat Mater, 2016, 15(1): 13-26.
[17] Qin SY, Zhang AQ, Cheng SX, et al. Drug self-delivery systems for cancer therapy[J]. Biomaterials, 2017, 112: 234-247.
[18] Biswas P, Datta HK, Dastidar P. Designing
coordination polymers as multi-drug-self-delivery systems for tuberculosis and cancer therapy: viability and toxicity assessment[J]. Biomater Sci-Uk, 2022, 10(21): 6201-6216.
[19] Gao L, Liu GY, Ma JL, et al. Drug nanocrystals: performances[J]. J Controlled Release, 2012, 160(3): 418-430.
[20] Zhao ZQ, Zhang XB, Zhang HY, et al. Elaborately engineering a self-indicating dual-drug nanoassembly for site-specific
photothermal-potentiated thrombus penetration and thrombolysis[J]. Adv Sci, 2022, 9(4): 2104264.
[21] Chen Y, Zhao TY, Bai MY, et al. Emerging small molecule-engineered hybrid nanomedicines for cancer therapy[J]. Chem Eng J, 2022, 435: 135160.
[22] Zhao LP, Zheng RR, Liu LS, et al. Self-delivery oxidative stress amplifier for chemotherapy sensitized
immunotherapy[J]. Biomaterials, 2021, 275: 120970.
[23] Li SM, Yang FJ, Sun XX, et al. Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy[J]. Chem Eng J, 2021, 426: 130838.
[24] Han LQ, Liang S, Mu WW, et al. Amphiphilic small molecular mates match hydrophobic drugs to
form nanoassemblies based on drug-mate strategy[J]. Asian J Pharm Sci, 2022, 17(1): 129-138.
[25] Fu SW, Li GT, Zang WL, et al. Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy[J]. Acta Pharm Sin B, 2022, 12(1): 92-106.
[26] Zhao RR, Zheng GR, Fan LL, et al. Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer
imaging and chemo-photo combination therapy[J]. Acta Biomater, 2018, 70: 197-210.
[27] Shi JJ, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nature Reviews Cancer, 2017, 17(1): 20-37.
[28] Shegokar R, Müller RH. Nanocrystals: industrially feasible
multifunctional formulation technology for poorly soluble actives[J]. Int J Pharmaceut, 2010, 399(1-2): 129-139.
[29] Mei H, Cai SS, Huang DN, et al. Carrier-free nanodrugs with efficient drug delivery and release for cancer
therapy: from intrinsic physicochemical properties to
external modification[J]. Bioact Mater, 2022, 8: 220-240.
[30] Malamatari M, Taylor KMG, Malamataris S, et al. Pharmaceutical nanocrystals: production by wet milling and applications[J]. Drug Discovery Today, 2018, 23(3): 534-547.
[31] Lu Y, Chen Y, Gemeinhart RA, et al. Developing nanocrystals for cancer treatment[J]. Nanomedicine-Uk, 2015, 10(16): 2537-2552.
[32] Zhang XB, Sun BJ, Zuo SY, et al. Self-assembly of a pure photosensitizer as a versatile theragnostic
nanoplatform for imaging-guided antitumor photothermal therapy[J]. Acs Appl Mater Inter, 2018, 10(36): 30155-30162.
[33] Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size[J]. Int J Pharmaceut, 2013, 453(1): 126-141.
[34] Huang L, Zhao SJ, Fang F, et al. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy[J]. Biomaterials, 2021, 268: 120557.
[35] Xie YD, Kocaefe D, Chen CY, et al. Review of research on template methods in preparation of
nanomaterials[J]. J Nanomater, 2016, 2016: 2302595.
[36] Xu QL, Meng GW, Han FM. Porous AAO
template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures[J]. Prog Mater Sci, 2018, 95: 243-285.
[37] Zhang JF, Li YN, An FF, et al. Preparation and
size control of sub-100 nm pure nanodrugs[J]. Nano Lett, 2015, 15(1): 313-318.
[38] Zhang JF, Nie WD, Chen R, et al. Green nass production of pure nanodrugs via an ice-template-assisted strategy[J]. Nano Lett, 2019, 19(2): 658-665.
[39] Moynihan S, Lacopino D, O'carroll D, et al. Template synthesis of highly oriented polyfluorene nanotube
arrays[J]. Chem Mater, 2008, 20(3): 996-1003.
[40] Valencia PM, Farokhzad OC, Karnik R, et al. Microfluidic technologies for accelerating the clinical
translation of nanoparticles[J]. Nat Nanotechnol, 2012, 7(10): 623-629.
[41] Liu DF, Zhang HB, Fontana F, et al. Current developments and applications of microfluidic
technology toward clinical translation of nanomedicines[J]. Adv Drug Deliver Rev, 2018, 128: 54-83.
[42] Fontana F, Figueiredo P, Zhang P, et al. Production of pure drug nanocrystals and nano co-crystals by confinement methods[J]. Adv Drug Deliver Rev, 2018, 131: 3-21.
[43] Chen Q, Liu GX, Liu S, et al. Remodeling the tumor microenvironment with emerging
nanotherapeutics[J]. Trends Pharmacol Sci, 2018, 39(1): 59-74.
[44] Lane D. Designer combination
therapy for cancer[J]. Nat Biotechnol, 2006, 24(2): 163-164.
[45] Han XP, Sun J, Wang YJ, et al. Recent advances
in platinum (IV) complex-based delivery systems to improve platinum (II) anticancer therapy[J]. Med Res Rev, 2015, 35(6): 1268-1299.
[46] Li W, Yang YL, Wang C, et al. Carrier-free, functionalized drug nanoparticles for
targeted drug delivery[J]. Chem Commun, 2012, 48(65): 8120-8122.
[47] Yu CT, Zhou MJ, Zhang XJ, et al. Smart doxorubicin nanoparticles with high drug payload for
enhanced chemotherapy against drug resistance and cancer diagnosis[J]. Nanoscale, 2015, 7(13): 5683-5690.
[48] Vankayala R, Hwang KC. Near-infrared-light-activatable nanomaterial-mediated phototheranostic
nanomedicines: an emerging paradigm for cancer treatment[J]. Adv Mater, 2018, 30(23): 1706320.
[49] Zhao LY, Liu YM, Chang R, et al. Supramolecular photothermal nanomaterials as an emerging
paradigm toward precision cancer therapy[J]. Adv Funct Mater, 2019, 29(4): 1806877.
[50] Luo C, Sun BJ, Wang C, et al. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy[J]. Controlled Release, 2019, 302: 79-89.
[51] Liu H, Wu DC. Near-infrared fluorescence tumor imaging using diR-loaded nanocarriers[J]. Curr Drug Deliv, 2016, 13(1): 40-48.
[52] Zhang SW, Wang YQ, Kong ZQ, et al. Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy[J]. Acta Pharm Sin B, 2021, 11(11): 3636-3647.
[53] Kanamala M, Wilson WR, Yang MM, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review[J]. Biomaterials, 2016, 85: 152-167.
[54] Musetti S, Huang L. Nanoparticle-mediated
remodeling of the tumor microenvironment to enhance immunotherapy[J]. Acs Nano, 2018, 12(12): 11740-11755.
[55] Zhao YY, Chen F, Pan YM, et al. Nanodrug formed by coassembly of dual anticancer drugs to
inhibit cancer cell drug resistance[J]. Acs Appl Mater Inter, 2015, 7(34): 19295-19305.
[56] Zhang T, Li X, Wu L, et al. Enhanced
cisplatin chemotherapy sensitivity by self-assembled nanoparticles with Olaparib[J]. Front Bioeng Biotech, 2024, 12: 1364975.
[57] Yang FJ, Ji QY, Liao R, et al. Precisely
engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy[J]. Chinese Chem Lett, 2022, 33(4): 1927-1932.
[58] 刘雨婷,王悦全,张申武,等. 小分子自组装纳米递药系统研究进展[J]. 药学学报, 2023, 58(3): 516-529.
[59] Zhou MJ, Zhang XJ, Yang YL, et al. Carrier-free functionalized multidrug nanorods for synergistic cancer
therapy[J]. Biomaterials, 2013, 34(35): 8960-8967.
|