[1] Peng JF, Salami OM, Habimana O, et al. Targeted mitochondrial drugs for treatment of ischemia-reperfusion injury[J].Curr Drug Targets,2022,23(16):1526-1536.
[2] Lv S, Liu H, Wang H. The Interplay between autophagy and
NLRP3 inflammasome in ischemia/reperfusion injury[J].Int J Mol Sci,2022,22(16):8773.
[3] Li X, Ma N, Xu J, et al. Targeting
ferroptosis: pathological mechanism and treatment of
ischemia-reperfusion injury[J].Oxid Med Cell Longev,2021,2021(1):1587922.
[4] Zhu T, Wan Q. Pharmacological properties and mechanisms of notoginsenoside
R1 in ischemia-reperfusion injury[J].Chin J Traumatol,2023,26(1):20-26.
[5] Zheng Y, Xu X, Chi F, et al. Pyroptosis: a newly discovered therapeutic target for ischemia-reperfusion injury[J].Biomolecules,2022,12(11):1625.
[6] Zhang F, Li Y, Wu J, et al. The role of
extracellular traps in ischemia reperfusion injury[J]. Front Immunol,2022,13:1022380.
[7] Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to
machine learning, neural networks, and
deep learning[J].Transl Vis Sci Technol, 2020,9(2):14.
[8] Fuping Z, Wuping L, Linhua W, et al. Tao-Hong-Si-Wu decoction reduces ischemia reperfusion rat myoblast cells calcium
overloading and inflammation through the Wnt/IP3R/CAMKII pathway [J].J Cell Biochem,2019,120(8):13095-13106.
[9] Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury [J]. Int Rev Cell Mol Biol,2012,298(1):229-317.
[10] Taylor CT, Lisco SJ, Awtrey CS, et al. Hypoxia inhibits cyclic nucleotide-stimulated epithelial ion transport: role
for nucleotide cyclases as oxygen sensors[J]. J Pharmacol Exp Ther, 1998,284(2):568-575.
[11] Feng H, Zhang YB, Gui JF, et al. Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses[J].PLoS Pathog,2021,17(1):e1009220.
[12] Movafagh S, Crook S, Vo K. Regulation of
hypoxia-inducible factor-1a by reactive oxygen species: new developments in an
old debate[J].J Cell Biochem, 2015,116(5):696-703.
[13] Tsurui Y, Sho M, Kuzumoto Y, et
al. Dual role of vascular endothelial growth factor in hepatic ischemia-reperfusion injury[J].Transplantation. 2005,79(9):1110-1115.
[14] Kojok K, El-Kadiry AE, Merhi Y. Role of NF-κB in platelet function[J].Int J Mol Sci, 2019,20(17):4185.
[15] Huertas J, Lee HT. Multi‑faceted roles of cathepsins in ischemia reperfusion
injury[J].Mol Med Rep,2022,26(6):368.
[16] Rahman T, Das A, Abir MH, et al. Cytokines and
their role as immunotherapeutics and vaccine adjuvants: the emerging concepts[J].Cytokine, 2023,169:156268.
[17] Cheng H, Zhong W, Wang L, et al. Effects of shear stress on vascular endothelial functions in
atherosclerosis and potential therapeutic approaches[J].Biomed Pharmacother, 2023,158:114198.
[18] Kohsaka T, Yoneda Y, Yoshida T,et al. Relaxin exerts a protective effect during ischemia-reperfusion in the rat model[J].Andrology, 2022,10(1):179-189.
[19] Wang R, Wang M, He S,et al. Targeting calcium homeostasis in myocardial
ischemia/reperfusion injury: an overview of
regulatory mechanisms and therapeutic reagents[J].Front Pharmacol,2020,11:872.
[20] Shi YN, Zhu N, Liu C, et al. Wnt5a and its
signaling pathway in angiogenesis[J].Clin Chim Acta,2017,471:263-269.
[21] Zeng XZ, Zhang YY, Yang Q,et al. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca2+-NFATc1 signaling pathway[J].Acta Pharmacol Sin,2020,41(2):229-236.
[22] Taylor CW, Prole DL. Ca(2+) signalling by IP(3) receptors[J].Subcell Biochem,2012,59:1-34.
[23] Zhang Y, Xia M, Zhao T,et al. Camk2a suppresses
denervated muscle atrophy by maintaining the Ca2+ homeostasis in
muscle cells[J].Cell Mol Biol (Noisy-le-grand),2023,69(11):25-29.
[24] Bonaud A, Khamyath M, Espéli M. The cellular
biology of plasma cells: unmet challenges and
opportunities[J].Immunol Lett,2023,254:6-12.
[25] DiToro D, Winstead CJ, Pham D, et al. Differential IL-2 expression
defines developmental fates of follicular versus nonfollicular helper T cells[J].Science,2018,361(6407):2933.
[26] Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis[J].Immunity,2016,44(3):450-462.
[27] Shapouri-Moghaddam A, Mohammadian S, Vazini H,et al. Macrophage
plasticity, polarization, and
function in health and disease[J].J Cell Physiol,2018,233(9):6425-6440.
[28] Liu Y, Kubiak JZ, Li XC,et al. Macrophages and RhoA pathway in transplanted organs[J].Results Probl Cell Differ,2017,62:365-376.
[29] Stoitzner P, Romani N, Rademacher C,et al. Antigen targeting to dendritic cells: still a place in future immunotherapy[J].Eur J Immunol,2022,52(12):1909-1924.
[30] Norrby K. Mast cells and
angiogenesis[J].APMIS,2002,110(5):355-371.
[31] Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities[J].Cell,2017,169(6):985-999.
[32] Bae YS, Lee HY, Jung YS,et al. Phospholipase Cγ in Toll-like receptor-mediated inflammation and innate immunity[J].Adv Biol Regul,2017,63:92-97.
[33] Zeng Q, Zhou Z, Qin S,et al. Rapamycin inhibits B-cell activating
factor (BAFF)-stimulated cell proliferation and survival by suppressing Ca2+-CaMKII-dependent PTEN/Akt-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells[J].Cell Calcium,2020,87:102171.
|