[1] World Health Organization.
Colorectal cancer[DB/OL]. (2021-07-11)[2023-05-15].https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer.
[2] Sharma R, Abbasi-Kangevari M, Abd-Rabu R, et al. Global, regional, and national burden of colorectal cancer and
its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Gastroenterol Hepatol, 2022,7(7): 627-647.
[3] Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chinese Med J, 2022, 135(5): 584-590.
[4] Hanahan D. Hallmarks of
cancer: new dimensions[J]. Cancer Discov, 2022,12(1):31-46.
[5] Schmitt M, Greten FR. The inflammatory pathogenesis of colorectal cancer[J]. Nat Rev Immunol, 2021,21(10): 653-667.
[6] Calu V, Ionescu A, Stanca L, et al. Key biomarkers within the colorectal cancer related
inflammatory microenvironment[J]. Sci Rep, 2021,11(1): 7940.
[7] Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated
macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017,545(7655): 495-499.
[8] Wang X, Wang J, Zhao J, et al. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment[J]. Theranostics, 2022,12(2): 963-975.
[9] Zhou Y, Nan P, Li C, et al. Upregulation of
MTA1 in colon cancer drives a CD8+ T cell-rich but classical macrophage-lacking immunosuppressive tumor microenvironment[J]. Front Oncol, 2022,12: 825783.
[10] Wang H, Tian T, Zhang J. Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): from mechanism to therapy and prognosis[J]. Int J Mol Sci, 2021,22(16): 8470.
[11] Kießler M, Plesca I, Sommer U, et al. Tumor-infiltrating plasmacytoid dendritic cells are associated with
survival in human colon cancer[J]. J Immunother Cancer, 2021,9(3): e001813.
[12] Wu J, Cheng H, Wang H, et al. Correlation between immune lymphoid cells and plasmacytoid
dendritic cells in human colon cancer[J]. Front Immunol, 2021,12: 601611.
[13] 何亚运, 罗泊涛,
陆元志. 肿瘤微环境中免疫抑制性细胞和细胞因子在抗肿瘤免疫反应中的作用研究进展[J]. 山东医药, 2019,59(6): 88-92.
[14] OuYang LY, Wu XJ, Ye SB, et al. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative
metabolism in human colorectal cancer[J]. J Transl Med, 2015,13: 1-12.
[15] Cózar B, Greppi M, Carpentier S, et al. Tumor-infiltrating natural killer cells[J]. Cancer Discov, 2021,11(1): 34-44.
[16] Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020,17(8): 807-821.
[17] 张泉, 邱思芳,
赵逵,
等. 结直肠癌及腺瘤患者CD4+、CD8+和CD28+T淋巴细胞的亚群变化及临床意义[J]. 中国癌症杂志, 2018,28(8): 577-583.
[18] 刘莹, 孙燕. 调节性T细胞在结直肠癌发生发展中的作用及相关治疗[J]. 中国肿瘤临床, 2021,48(19): 1005-1009.
[19] Olguín JE, Medina-Andrade I, Rodríguez T, et al. Relevance of regulatory T cells during colorectal cancer
development[J]. Cancer, 2020,12(7): E1888.
[20] Lu Y, Li Y, Liu Q, et al. MondoA-Thioredoxin-Interacting protein axis maintains regulatory T-cell identity and function in colorectal cncer microenvironment[J]. Gastroenterol, 2021,161(2): 575-591.
[21] Berntsson J, Nodin B, Eberhard J, et al. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer[J]. Int J Cancer, 2016,139(5): 1129-1139.
[22] Shimabukuro-Vornhagen A, Schlößer HA, Gryschok L, et al. Characterization
of tumor-associated B-cell subsets in patients with colorectal cancer[J]. Oncotarget, 2014,5(13):4651-4664.
[23] Ray AL, Berggren KL, Cruz SR, et al. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α dependent colorectal cancer growth[J]. Int J cancer, 2018,142(8): 1702-1711.
[24] Gao S, Hu J, Wu X, et al. PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway[J]. Biomed Pharmacother, 2018,108: 618-624.
[25] Sullivan KM, Jiang X, Guha P, et al. Blockade of interleukin 10 potentiates antitumour immune
function in human colorectal cancer liver metastases[J]. Gut, 2023,72(2): 325-337.
[26] Rossowska J, Anger N, Szczygieł A, et al. Reprogramming the murine colon cancer microenvironment using
lentivectors encoding shRNA against IL-10 as a
component of a potent DC-based chemoimmunotherapy[J]. J Exp Clin Cancer Res, 2018,37(1): 1-14.
[27] Xu H, Liu T, Li J, et al. Roburic acid targets
TNF to inhibit the NF-κB signaling pathway and suppress human colorectal cancer cell
growth[J]. Front Immunol, 2022,13: 853165.
[28] Xu Y, Wang H, Wang T, et al. Dahuang Fuzi Baijiang decoction restricts progenitor to
terminally exhausted T cell differentiation in colorectal cancer[J]. Cancer Sci, 2022,113(5): 1739-1751.
[29] Yu X, Wang D, Wang X, et al. CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA
signaling by sponging miR-133a-3p[J]. J Exp Clin Cancer Res, 2019,38: 1-18.
[30] Wang D, Wang X, Song Y, et al. Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced
metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts[J]. Cell Death Dis, 2022,13(4): 380.
[31] Dinami R, Porru M, Amoreo CA, et al. TRF2 and VEGF-A: an unknown relationship with prognostic impact on survival of
colorectal cancer patients[J]. J Exp Clin Cancer Res, 2020,39: 111.
[32] Zhao M, Mishra L, Deng C-X. The role of TGF-β/SMAD4 signaling in cancer[J]. Int J Biol Sci, 2018,14(2): 111–123.
[33] Perez LG, Kempski J, McGee HM, et al. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated
colon cancer[J]. Nat Commun, 2020,11(1):2608.
[34] Ganguly D, Chandra R, Karalis J, et al. Cancer-associated fibroblasts: versatile players in
the tumor microenvironment[J]. Cancers, 2020,12(9):2652.
[35] Chen YF, Yu ZL, Lv MY, et al. Cancer-associated fibroblasts impact the clinical outcome and treatment
response in colorectal cancer via immune system modulation: a comprehensive genome-wide analysis[J]. Mol Med, 2021,27(1): 1-12.
[36] Zhang R, Qi F, Zhao F, et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in
colorectal cancer[J]. Cell Death Dis, 2019,10(4): 273.
[37] Hu JL, Wang W, Lan XL, et al. CAFs secreted exosomes promote metastasis and chemotherapy
resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer, 2019,18(1): 1-15.
[38] Pape J, Magdeldin T, Stamati K, et al. Cancer-associated fibroblasts mediate cancer progression and remodel the
tumouroid stroma[J]. British J Cancer, 2020,123(7): 1178-1190.
[39] Zhang X, Hu F, Li G, et al. Human colorectal
cancer-derived mesenchymal stem cells promote colorectal cancer progression
through IL-6/JAK2/STAT3 signaling[J]. Cell Death Dis, 2018,9(2): 25.
[40] Zhang R, Qi F, Shao S, et al. Human colorectal
cancer-derived carcinoma associated fibroblasts promote CD44-mediated adhesion of colorectal cancer cells to endothelial cells by
secretion of HGF[J]. Cancer Cell Int, 2019,19: 1-12.
[41] Cox TR. The matrix in cancer[J]. Nature Rev Cancer, 2021,21(4): 217-238.
[42] Crotti S, Piccoli M, Rizzolio F, et al. Extracellular matrix and colorectal cancer: how surrounding microenvironment affects cancer cell behavior?[J]. J Cell Physiol, 2017,232(5): 967-975.
[43] Shantha KH, Miyagaki H, Herath SA, et al. Plasma MMP-2 and MMP-7 levels are elevated first month after surgery and may promote
growth of residual metastases[J]. World J Gastrointest Oncol, 2021,13(8): 879-892.
[44] 孔宪斌, 杨振弢,
彭莹莹,
等. 基于“虚、毒、瘀”浅谈结直肠癌的病机和治疗[J]. 环球中医药, 2020,13(12): 2081-2084.
[45] 申丽丽, 郝淑兰,
刘泽静,
等. 从“脾虚”论治大肠癌肝转移探析[J]. 河北中医, 2020,42(10): 1575-1578, 1582.
[46] 王琳, 李华山,
李嘉俊,
等. 抗结直肠癌治疗中应用中医药的进展探讨[J]. 现代消化及介入诊疗, 2020,25(9): 1262-1264.
[47] Wang Y, Zhang Q, Chen Y, et al. Antitumor effects of immunity-enhancing traditional chinese medicine[J]. Biomed Pharmacother, 2020,121:109570.
[48] 邹孟龙, 黄晓燕,
陈雅璐,
等. 基于国家专利数据库分析中药复方治疗大肠癌用药规律[J]. 国际中医中药杂志, 2022,44(6): 680-684.
[49] Huang J, Jiang T, Kang J, et al. Synergistic effect of Huangqin decoction combined treatment
with radix actinidiae chinensis on DSS and AOM-induced colorectal cancer[J]. Front Pharmacol, 2022,13: 933070.
[50] Wang Y, Zhang X, Li J, et al. Sini decoction ameliorates colorectal cancer and modulates
the composition of gut microbiota in mice[J]. Front Pharmacol, 2021,12: 609992.
[51] Y L, Zx L, Cy X, et al. Gegen Qinlian
decoction enhances immunity and protects intestinal barrier function in
colorectal cancer patients via gut microbiota[J]. World J Gastroenterol, 2020,26(48):7633-7651.
[52] Zhang Y, Pu W, Bousquenaud M, et
al. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis[J]. Front Oncol, 2020,10: 564674.
[53] Lin Y, Li B, Yang X, et al. Non-hematopoietic STAT6 induces epithelial tight junction dysfunction
and promotes intestinal inflammation and tumorigenesis[J]. Mucosal Immunol, 2019,12(6): 1304-1315.
[54] Luo Q, Huang S, Zhao L, et al. Chang qing formula ameliorates colitis-associated colorectal cancer via suppressing IL-17/NF-κB/STAT3 pathway in mice as revealed by network pharmacology study[J]. Front Pharmacol, 2022,13: 893231.
[55] Zhou Y, Feng Y, Cen R, et al. San-Wu-Huang-Qin decoction attenuates tumorigenesis and mucosal barrier
impairment in the AOM/DSS model by targeting gut microbiome[J]. Phytomedicine, 2022,98: 153966.
[56] Yu W, Sun S, Zhang K, et al. Fructus ligustri
lucidi suppresses inflammation and restores the microbiome profile in murine
colitis models[J]. Phytomedicine, 2022,106: 154438.
[57] Chai N, Xiong Y, Zhang Y, et al. YYFZBJS inhibits colorectal tumorigenesis by remodeling gut
microbiota and influence on M2 macrophage polarization in vivo and in vitro[J]. Am J Cancer Res, 2021,11(11): 5338-5357.
[58] Xiang B, Geng R, Zhang Z, et al. Identification of the effect and mechanism of Yiyi Fuzi
Baijiang powder against colorectal cancer using network pharmacology and
experimental validation[J]. Front Pharmacol, 2022,13: 929836.
[59] Dong M, Liu H, Cao T, et al. Huoxiang Zhengqi
alleviates azoxymethane/dextran sulfate sodium-induced colitis-associated cancer by regulating Nrf2/NF-κB/NLRP3 signaling[J]. Front Pharmacol, 2022,13: 1002269.
[60] Ruan J, Li H, Lu M, et al. Bioactive
triterpenes of jujube in the prevention of colorectal cancer and their
molecular mechanism research[J]. Phytomedicine, 2023,110: 154639.
[61] 节阳华, 杨晓蓓,
陈卫东. 白头翁汤对结直肠癌小鼠炎性微环境的影响[J]. 广州中医药大学学报, 2020,37(12): 2406-2412.
[62] Jiang F, Liu M, Wang H, et al. Wu Mei Wan
attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway[J]. Biomed Pharmacother, 2020,125:109982.
[63] Wang J, Ding K, Wang Y, et al. Wumei Pill Ameliorates AOM/DSS-induced colitis-associated colon cancer through Inhibition of inflammation and
oxidative stress by regulating s-adenosylhomocysteine
hydrolase-(AHCY-)mediated hedgehog signaling in mice[J]. Oxid Med Cell Longev, 2022,2022: 4061713.
|