[1] Cabello-Verrugio C, Simon F, Trollet C, et al. Oxidative stress
in disease and aging: mechanisms and
therapies 2016[J]. Oxid Med Cell Longev, 2017,2017:4310469.
[2] Zhang W, Yin L, Tao X, et al. Dioscin
alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation[J]. Environ Toxicol Pharmacol, 2016,45:193-201.
[3] Zhao L, Tao X, Qi Y, et al. Protective
effect of dioscin against doxorubicin-induced
cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress[J]. Redox Biol, 2018,16:189-198.
[4] Dong L, Yin L, Li R, et al. Dioscin
alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation[J]. Eur J Pharmacol, 2021;908:174321.
[5] Sies H, Berndt C, Jones DP. Oxidative
stress[J]. Annu Rev Biochem, 2017,86:715-748.
[6] Lyu D, Tian Q, Qian H, et al. Dioscin attenuates myocardial ischemic/reperfusion-induced cardiac dysfunction through suppression of reactive oxygen
species[J]. Oxid Med Cell Longev, 2021,2021:3766919.
[7] Salim S. Oxidative stress and
the central nervous system[J]. J Pharmacol Exp Ther, 2017,360:201-205.
[8] Hussain T, Tan B, Yin Y, et al. Oxidative stress
and inflammation: what polyphenols can do for us?[J]. Oxid Med Cell Longev, 2016,2016:7432797.
[9] Qi JH, Dong FX. The relevant targets of anti-oxidative stress: a review[J]. J Drug Target, 2021,29:677-686.
[10] Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015,4:180-183.
[11] Zhou X, Gao S, Yue M, et al. Recent advances
in analytical methods of oxidative stress biomarkers induced by environmental
pollutant exposure[J]. TrAC Trends in Analytical Chemistry, 2023,160:116978.
[12] Orta Yilmaz B, Yildizbayrak N, Erkan M. Sodium
arsenite-induced detriment of cell function in Leydig and Sertoli cells: the potential relation of oxidative damage and antioxidant defense
system[J]. Drug Chem Toxicol, 2020,43:479-487.
[13] Pisoschi AM, Pop A, Iordache F, et
al. Oxidative stress mitigation by antioxidants-An overview on their chemistry and influences on health status[J]. Eur J Med Chem, 2021,209:112891.
[14] Verma N, Singh H, Khanna D, et al. Classification of drug molecules for oxidative stress
signalling pathway[J]. IET Syst Biol, 2019,13:243-250.
[15] Hu X, Dong D, Xia M, et al. Oxidative stress and antioxidant capacity: development and prospects[J]. New J Chemistry, 2020,44:11405-11419.
[16] Ávila-Escalante ML, Coop-Gamas F, Cervantes-Rodríguez M, et al. The effect of
diet on oxidative stress and metabolic diseases-Clinically controlled trials[J]. J Food Biochem, 2020,44:e13191.
[17] Zhang S. Research on the
Oxidative stress response of human body caused by different nutritional
supplements and the improvement effect of exercise[J]. Comput Intell Neurosci, 2022,2022:1355254.
[18] Rahman I. Antioxidant
therapies in COPD[J]. Int J Chron Obstruct
Pulmon Dis, 2006,1:15-29.
[19] Liang B, Zhu YC, Lu J, et al. Effects of traditional Chinese medication-based bioactive compounds on cellular and molecular mechanisms of
oxidative stress[J]. Oxid Med Cell Longev, 2021,2021:3617498.
[20] Cheng J, Chen J, Liu X, et al. The origin and evolution of the diosgenin biosynthetic
pathway in yam[J]. Plant Commun, 2021,2:100079.
[21] Bandopadhyay S, Anand U, Gadekar VS, et al. Dioscin: a review on
pharmacological properties and therapeutic values[J]. Biofactors, 2022,48:22-55.
[22] Zhang Z, Zhao X, Gao M, et al. Dioscin alleviates myocardial infarction injury via regulating
BMP4/NOX1-mediated oxidative stress and inflammation[J]. Phytomedicine, 2022,103:154222.
[23] Guan L, Mao Z, Yang S, et al. Dioscin
alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative
stress and inflammation[J]. Biomed Pharmacother, 2022,152:113248.
[24] Zhong Y, Liu J, Sun D, et al. Dioscin relieves
diabetic nephropathy via suppressing oxidative stress and apoptosis, and improving mitochondrial quality and quantity control[J]. Food Funct, 2022,13:3660-3673.
[25] Chang Y, Wang S, Xu J, et al. Optimization of extraction process of Dioscorea nipponica
Makino saponins and their UPLC-QTOF-MS profiling, antioxidant, antibacterial and anti-inflammatory
activities[J]. Arabian J Chemistry, 2023,16:104630.
[26] Liu A, Zhang W, Wang S, et al. HMGB-1/RAGE signaling inhibition by dioscin attenuates hippocampal neuron
damage induced by oxygen-glucose deprivation/reperfusion[J]. Exp Ther Med, 2020,20:231.
[27] Khateeb S, Albalawi A, Alkhedaide A. Diosgenin
modulates oxidative stress and inflammation in high-fat diet-induced obesity in mice[J]. Diabetes Metab Syndr Obes, 2022,15:1589-1596.
[28] Chen C, Zhou M, Ge Y, et al. SIRT1 and aging related signaling pathways[J]. Mech Ageing Dev, 2020,187:111215.
[29] Alves-Fernandes DK, Jasiulionis MG. The
role of SIRT1 on DNA damage response and epigenetic alterations in cancer[J]. Int J Mol Sci, 2019,20:3153.
[30] 邓小杰, 王甜, 徐芬, 等. SIRT1介导间歇性禁食改善高脂饮食诱导的肥胖小鼠脂肪组织线粒体功能和炎症状态[J]. 新医学, 2023,54:254-260.
[31] Yang Y, Liu Y, Wang Y, et al. Regulation of
SIRT1 and its roles in inflammation[J]. Front Immunol, 2022,13:831168.
[32] 苏娜, 陈日玲. Sirt1功能的研究进展[J]. 中国医学创新, 2021,18:185-188.
[33] Song S, Chu L, Liang H, et al. Protective
effects of dioscin against doxorubicin-induced
hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal[J]. Front Pharmacol, 2019,10:1030.
[34] Zhang XS, Lu Y, Li W, et al.
Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via
inhibiting NLRP3 inflammasome through SIRT1-dependent pathway[J]. Br J Pharmacol, 2021,178:3648-3666.
[35] Gu L, Tao X, Xu Y, et al. Corrigendum to
"Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway". [Toxicology and Applied Pharmacology 292 (2016) 19-29] [J]. Toxicol Appl Pharmacol, 2019,380:114708.
[36] Yang F, Liao J, Yu W, et al. Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in immune organs of
chicken[J]. Ecotoxicol Environ Saf, 2020,200:110715.
[37] Li F, Sun X, Zheng B, et al. Arginase II
promotes intervertebral disc degeneration through exacerbating senescence and
apoptosis caused by oxidative stress and inflammation via the NF-κB pathway[J]. Front Cell Dev Biol, 2021,9:737809.
[38] Zhang ZM, Wang YC, Chen L, et al. Protective effects of the suppressed NF-κB/TLR4 signaling pathway on oxidative stress of lung tissue in rat
with acute lung injury[J]. Kaohsiung J Med Sci, 2019,35:265-276.
[39] Man S, Xie L, Liu X, et al. Diosgenin
relieves oxaliplatin-induced pain by affecting TLR4/NF-κB inflammatory signaling and the gut microbiota[J]. Food Funct, 2023,14:516-524.
[40] Li X, Liang J, Qin A, et al. Protective effect of Di'ao Xinxuekang capsule against
doxorubicin-induced chronic cardiotoxicity[J]. J Ethnopharmacol, 2022,287:114943.
[41] Qi Y, Li R, Xu L, et al. Neuroprotective
effect of dioscin on the aging brain[J]. Molecules, 2019,24:1247.
[42] Jin S, Zhu T, Deng S, et al. Dioscin
ameliorates cisplatin-induced intestinal toxicity by mitigating oxidative stress and inflammation[J]. Int Immunopharmacol, 2022,111:109111.
[43] Xu Z, Li X, Li X, et al. Dioscin
attenuates lipopolysaccharide-induced inflammatory myocardial injury through oxidative stress-related pathway[J]. Ann Palliat Med, 2021,10:8827-8836.
[44] Mao Z, Gao M, Zhao X, et al. Neuroprotective
effect of dioscin against Parkinson's disease via adjusting dual-specificity phosphatase 6 (DUSP6)-mediated oxidative stress[J]. Molecules, 2022,27:3151.
[45] Li Y, Gao M, Yin LH, et al. Dioscin
ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress[J]. Free Radic Biol Med, 2021,169:99-109.
[46] Chen L, Li Q, Lei L, et al. Dioscin
ameliorates cardiac hypertrophy through inhibition of the MAPK and
Akt/GSK3β/mTOR pathways[J]. Life Sci, 2018,209:420-429.
[47] Li R, Qi Y, Yuan Q, et al. Protective
effects of dioscin against isoproterenol-induced cardiac hypertrophy via adjusting PKCε/ERK-mediated oxidative stress[J]. Eur J Pharmacol, 2021,907:174277.
|