|
[1] Armstrong DG, Tan TW, Boulton AJM, et al. Diabetic foot ulcers:a review[J].JAMA,2023,330(1):62-75.
[2] Jhamb S, Vangaveti VN, Malabu UH. Genetic and
molecular basis of diabetic foot ulcers:clinical review[J].J Tissue Viability,2016,25(4):229-236.
[3] 王雪,王伟,王萍,等.糖尿病足感染患者血清miRNA表达与创面修复因子及免疫功能的关系[J].中华医院感染学杂志,2021,31(22):3422-3426.
[4] Linnemann C, Şahin F, Li N, et al. Insulin can delay neutrophil extracellular trap formation in
vitro-implication for diabetic wound care?[J].Biology (Basel),2023,12(8):1082.
[5] Tsirogianni AK, Moutsopoulos NM, Moutsopoulos HM. Wound
healing: immunological aspects[J].Injury,2006,37(Suppl 1):S5-12.
[6] Melbouci D, Haidar Ahmad A, Decker P. Neutrophil
extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive
immunities in inflammatory autoimmune diseases[J].RMD Open,2023,9(3):e003104.
[7] Pittman K, Kubes P. Damage-associated molecular patterns control neutrophil recruitment[J].J Innate Immun,2013,5:315-323.
[8] Soehnlein O, Wantha S, Simsekyilmaz S, et al. Neutrophil-derived cathelicidin protects from neointimal hyperplasia[J].Sci Transl Med,2011,3(103):103ra98.
[9] Wang J. Neutrophils in tissue
injury and repair[J].Cell Tissue Res,2018,371(3):531-539.
[10] 张延梅,严瑞明,丁玫琳,等.树突状细胞TLR2阻断抑制自身免疫性糖尿病研究[J].中国免疫学杂志,2019,35(8):902-905,911.
[11] 蔺莉,徐旭英.专职吞噬细胞胞葬功能在慢性创面修复中的作用机制及应用[J/OL].海南医学院学报,1-14[2024-06-12].
[12] Adamson R. Role of macrophages
in normal wound healing: an overview[J].J Wound Care,2009,18(8):349-351.
[13] 黄仁燕,韩强,胡啸明,等.巨噬细胞在糖尿病足溃疡愈合过程中调控机制研究进展[J].海南医学院学报,2019,25(4):315-320.
[14] 许诏华,师建平.糖尿病创面愈合中巨噬细胞极化表观遗传学调控的研究进展[J].中国糖尿病杂志,2024,32(2):145-148.
[15] Louiselle AE, Niemiec SM, Zgheib C, et al. Macrophage polarization and diabetic wound healing[J].Transl Res,2021,236:109-116.
[16] Ma H, Ke Y, Li Q, et al. Bovine and human
insulin activate CD8+-autoreactive
CTLexpressing both type 1 and type 2 cytokines in C57BL/6 mice[J].J Immunol,2000,164(1):86-92.
[17] Park JE, Barbul A. Understanding the role of immune regulation in wound
healing[J]. Am J Surg,2004,187(5A):11S-16S.
[18] Li B, Wang JH. Fibroblasts and myofibroblasts in wound healing: force generation and measurement[J].J Tissue Viability,2011,20(4):108-120.
[19] 郭少英,闫建军,李媛,等.桃红四物汤对缺糖缺氧大鼠脑微血管内皮细胞VEGF、VEGFR-2、Akt基因及蛋白表达的作用机制研究[J].现代生物医学进展,2024,24(4):636-640.
[20] 潘冠华,阿迪力·萨来,等.NF-κB介导VEGF-A促进食管鳞状细胞癌血管生长和细胞增殖的实验研究[J].川北医学院学报,2024,39(5):583-588.
[21] 田佳庆,韦雨柔,肖方骏,等.虎杖苷调控HIF-1α/VEGF信号通路对绝经后骨质疏松症大鼠H型血管生成的影响[J].中成药,2024,46(5):1672-1676.
[22] 骆燕洪,田宇,武云凤,等.骨化三醇通过磷脂酰肌醇3激酶/蛋白激酶B信号通路改善高糖诱导的血管内皮细胞损伤的研究[J].中国糖尿病杂志,2024,32(4):291-298.
[23] Geng K, Ma X, Jiang Z, et al. WDR74
facilitates TGF-β/Smad pathway activation to promote M2 macrophage polarization and
diabetic foot ulcer wound healing in mice[J].Cell Biol Toxicol,2023,39(4):1577-1591.
[24] Zhao Q, Xu J, Han X, et al. Growth
differentiation factor 10 induces angiogenesis to promote wound healing in rats
with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway[J].Front Endocrinol (Lausanne),2023,13:1013018.
[25] 蔡小艳,符茂雄.糖尿病足创面皮肤基质相关细胞因子研究进展[J].现代医药卫生,2022,38(12):2055-2059.
[26] Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot
ulcer healing: a detailed review[J].Rev Endocr Metab Disord,2019,20(2):207-217.
[27] Presta M, Chiodelli P, Giacomini A, et al. Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic
approach[J].Pharmacol Ther,2017,179:171-187.
[28] 宗宪磊,曹春艳,宋国栋,等.角质细胞生长因子活性短肽促进糖尿病大鼠创面愈合的实验研究[J].中国医药导报,2018,15(30):4-7.
[29] Peng Y, Wu S, Tang Q, et al. KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner[J].J Biol Chem,2019,294(21):8361-8370.
[30] Xiaojie W, Banda J, Qi H, et al. Scarless wound healing: Current insights from
the perspectives of TGF-β, KGF-1, and KGF-2[J].Cytokine Growth Factor
Rev,2022,66:26-37.
[31] Top C, Yildiz S, Oncul O, et al. Phagocytic activity of neutrophils improves over the course
of therapy of diabetic foot infections[J].J Infect,2007,55(4):369-373.
[32] Huang W, Jiao J, Liu J, et al. MFG-E8 accelerates wound healing in diabetes by regulating "NLRP3
inflammasome-neutrophil extracellular traps" axis[J].Cell Death Discov,2020,6:84.
[33] Basyreva LY, Shmeleva EV, Ivanov VA, et al. The effect of vitamin D3 on neutrophil extracellular trap
formation in high-glucose conditions[J].Bull Exp Biol Med,2023,176(2):137-142.
[34] Strom A, Brüggemann J, Ziegler I, et al. Pronounced reduction of cutaneous Langerhans cell density in
recently diagnosed type 2 diabetes[J].Diabetes,2014,63(3):1148-1153.
[35] Rahmannia M, Amini A, Chien S, et al. Impact of photobiomodulation on macrophages and their
polarization during diabetic wound healing: a systematic review[J].Lasers Med Sci,2022,37(7):2805-2815.
[36] 李晓春,吴建能,张华珍,等.糖尿病足与T淋巴细胞亚群的相关性研究[J].海南医学,2013,24(11):1628-1630.
[37] 盛宏光,金惠.2型糖尿病与流式细胞CD系列关系探讨[J].浙江预防医学,2001,13(7):53-54.
[38] Deng C, Xiang Y, Tan T, et al. Altered peripheral B-lymphocyte subsets in type 1diabetes and latent autoimmune diabetes
in adults[J].Diabetes Care,2016,39(3):434-440.
[39] Wan R, Weissman JP, Grundman K, et al. Diabetic wound healing:the impact of diabetes
on myofibroblast activity and its potential therapeutic treatments[J].Wound Repair Regen,2021,29(4):573-581.
[40] Liu Y, Liu Y, He W, et al. Fibroblasts:immunomodulatory factors in refractory diabetic wound healing[J].Front Immunol,2022,13:918223.
[41] Monika P, Waiker PV, Chandraprabha MN, et al. Myofibroblast progeny in wound biology and wound healing
studies[J]. Wound Repair Regen,2021,29(4):531-547.
[42] 齐淑静,付改霞,齐瑞霞.小檗碱调节HIF-1α/VEGF信号通路对皮肤溃疡大鼠血管生成和创面愈合的影响[J].陕西医学杂志,2024,53(2):173-178.
[43] 刘博研,赵锦.PDGF、FGF-21、APN在2型糖尿病足患者中的表达及意义[J].中国实验诊断学,2023,27(6):683-686.
[44] Shi R, Lian W, Han S, et al. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats[J].Gene Ther,2018,25(6):425-438.
[45] 陈芳,孙付宝,陈小将,等.糖尿病足患者血清VEGF、bFGF水平与下肢血管病变程度的关系[J].临床和实验医学杂志,2021,20(17):1856-1859.
|