[1] CDISC.CDISC standards[EB/OL].(2024-09-26)[2024-09-26].https://www.cdisc.org/standards.
[2] 国家药品监督管理局.国家药监局药审中心关于发布《药物临床试验数据递交指导原则(试行)》的通告(2020年第16号)[EB/OL].(2020-07-20)[2024-11-19].https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypqtggtg/20200720171201514.html?type=pc&m=.
[3] Huynh-Ba K, Latoz C. Stability lifecycle: an application of ICH Q12 to manage the pharmaceutical stability
program[J].Am Pharm Rev, 2024, 27(4):26-33.
[4] U.S. Department of Health and
Human Services. E9(R1) Statistical principles for clinical trials: addendum: estimands and
sensitivity analysis in clinical trials: guidance for industry[EB/OL].(2021-05-30)[2024-11-19].https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e9r1-statistical-principles-clinical-trials-addendum-estimands-and-sensitivity-analysis-clinical.
[5] 国家药品监督管理局. 国家药监局关于印发《国家药品监督管理局关于加快推进药品智慧监管的行动计划》的通知(国药监综〔2019〕26号)[EB/OL].(2019-05-21)[2024-11-19].https://www.gov.cn/zhengce/zhengceku/2019-09/26/content_5433485.htm.
[6] 国家药品监督管理局. 国家药监局关于发布《药品监管信息化标准体系》的公告(2023年第97号)[EB/OL].(2023-07-31)[2024-11-19]. https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/ggtg/zhggtg/20230817164242186.html.
[7] 国家药品监督管理局.国家药监局综合司关于印发药品监管人工智能典型应用场景清单的通知(药监综函〔2024〕313号)[EB/OL]. (2024-06-13)[2024-11-19].https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjzh/20240618144318144.html?type=pc&m=.
[8] 国家发展改革委.国家发展改革委等部门关于推动平台经济规范健康持续发展的若干意见(发改高技〔2021〕1872号)[EB/OL].(2024-06-13)[2024-11-19].https://www.gov.cn/zhengce/zhengceku/2022-01/20/content_5669431.htm.
[9] 漆亮,王琪,刘雅慧,等.基于药品企业质量风险大数据的现场监管策略优化研究[J].中国药房,2024,35(1):10-14.
[10] Al-Bahri M, Ateya A, Muthanna A, et al. Digital object
architecture for IoT networks[J].Intell Autom Soft Comput, 2023,35(1):97-110.
[11] Bellagarda JS, Abu-Mahfouz AM. An updated survey on the convergence of distributed
ledger technology and artificial intelligence: current state, major challenges and future direction[J].IEEE Access, 2022,10(1):50774-50793.
[12] Abell L, Maher F, Jennings AC, et al. A systematic review of simulation studies which compare
existing statistical methods to account for non-compliance in randomised controlled trials[J].BMC Med Res Methodol, 2023,23(1):300.
[13] Zehavi T, Nevo D. Matching methods for truncation by death problems[J].J R Stat Soc Ser A Stat Soc, 2023, 186(4):659-681.
[14] Hu W, Zhou XH, Wu P. Identification
and estimation of treatment effects on long-term outcomes in clinical trials with external observational data[J].Stat Sin, 2022.
[15] Wang Y, Deng Y, Zhou XH. Causal
inference for time-to-event data with a cured subpopulation[J].Biometrics, 2024,80(2):ujae028.
[16] Desai RJ, Bradley MC, Lee H, et al. A simulation-based bias analysis to assess the impact of unmeasured confounding
when designing nonrandomized database studies[J].Am J Epidemiol, 2024,193(11):1600-1608.
[17] Li H, Hu T, Xiong Z, et al. ADRNet: a generalized collaborative filtering framework combining clinical
and non-clinical data for adverse drug reaction prediction[C]//Proceedings of the 17th ACM Conference on
Recommender Systems (RecSys'23).New York, USA: Association for Computing Machinery, 2023:682-687.
[18] Liguori V, Gaio M, Zinzi A, et al. The safety profiles of two first-generation NTRK inhibitors: analysis of individual
case safety reports from the FDA adverse event reporting system (FAERS) database[J].Biomedicines, 2023,11(9):2538.
[19] Jiao X, Pu L, Lan S, et al. Adverse drug
reaction signal detection methods in spontaneous reporting system: a systematic review[J].Pharmacoepidemiol Drug Saf, 2024,33(3):e5768.
[20] Remy F, Demuynck K, Demeester T. BioLORD-2023: semantic textual representations fusing large
language models and clinical knowledge graph insights[J].J Am Med Inform Assoc, 2024,31(9):1844-1855.
|