中国医药导刊 ›› 2024, Vol. 26 ›› Issue (10): 981-988.
转运蛋白介导黄酮类化合物葡萄糖醛酸化产物的研究进展
戎怿, 姜凯迪*
收稿日期:
2024-09-02
修回日期:
2024-10-11
出版日期:
2024-10-28
发布日期:
2024-10-28
Research Progress on Transporter-Mediated Glucuronides of Flavonoids
Received:
2024-09-02
Revised:
2024-10-11
Online:
2024-10-28
Published:
2024-10-28
摘要:
黄酮类化合物是广泛存在于自然界中的一类物质,具有多种药理作用,包括预防及治疗癌症、心脑血管疾病、骨质疏松等。然而,多数黄酮类化合物在口服给药后的生物利用度低,限制了药物的开发和临床应用。国内外诸多学者对其吸收代谢机制进行了研究,发现药物转运蛋白与黄酮类化合物及其主要代谢产物——葡萄糖醛酸化结合物的相互作用是影响其体内生物利用度的主要因素之一。本研究总结了有关摄取和外排转运蛋白与黄酮类化合物及其葡萄糖醛酸代谢产物转运相互作用的研究进展,概述了与其相关的文献,以期为提高黄酮类化合物的生物利用度和临床合理应用提供理论依据。
中图分类号:
戎怿, 姜凯迪.
转运蛋白介导黄酮类化合物葡萄糖醛酸化产物的研究进展 [J]. 中国医药导刊, 2024, 26(10): 981-988.
RONG Yi, JIANG Kaidi.
Research Progress on Transporter-Mediated Glucuronides of Flavonoids [J]. CHINESE JOURNAL OF MEDICINAL GUIDE, 2024, 26(10): 981-988.
[1] Grassi D, Desideri G, Croce G, et al. Flavonoids, vascular function and cardiovascular protection[J].Curr Pharm Des, 2009,15(10):1072-1084. [2] García-Lafuente A, Guillamón E, Villares A, et al. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease[J].Inflamm Res, 2009,58(9):537-552. [3] Rong Y, Tu Y, Yin T, et al. Rapid intestinal glucuronidation and hepatic glucuronide recycling contributes significantly to the enterohepatic circulation of icaritin and its glucuronides in vivo[J].Arch Toxicol, 2020,94(11):3737-3749. [4] Tu Y, Wang L, Rong Y, et al. Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats[J].Elife, 2021,10:e58820. [5] International Transporter Consortium, Giacomini KM,Huang SM, et al. Membrane transporters in drug development[J].Nat Rev Drug Discov, 2010,9(3):215-236. [6] Hillgren KM, Keppler D, Zur AA, et al. Emerging transporters of clinical importance: an update from the International Transporter Consortium[J].Clin Pharmacol Ther, 2013,94(1):52-63. [7] Wolking S, Schaeffeler E, Lerche H, et al.Impact of genetic polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on drug disposition and potential clinical implications: update of the literature[J].Clin Pharmacokinet, 2015,54(7):709-735. [8] Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites[J].J Clin Pharmacol, 2016,56(Suppl 7):S23-39. [9] Huang SM, Temple R, Throckmorton DC,et al. Drug interaction studies: study design, data analysis, and implications for dosing and labeling[J].Clin Pharmacol Ther, 2007,81(2):298-304. [10] Zhou F, Zhu L, Wang K, et al. Recent advance in the pharmacogenomics of human solute carrier transporters (SLCs) in drug disposition[J].Adv Drug Deliv Rev, 2017,116:21-36. [11] Türková A, Zdrazil B. Current advances in studying clinically relevant transporters of the solute carrier (SLC) family by connecting computational modeling and data science[J].Comput Struct Biotechnol J, 2019,17:390-405. [12] Shen H, Lai Y, Rodrigues AD. Organic anion transporter 2: an enigmatic human solute carrier[J].Drug Metab Dispos, 2017,45(2):228-236. [13] McFeely SJ, Wu L, Ritchie TK, et al. Organic anion transporting polypeptide 2B1—more than a glass-full of drug interactions[J].Pharmacol Ther, 2019,196:204-215. [14] 张存珍.异黄酮的转运机制与药物相互作用研究[D].苏州大学,2020. [15] Kalapos-Kovács B, Juhász V, Temesszentandrási-Ambrus C, et al. Baicalin is a substrate of OATP2B1 and OATP1B3[J].Phytother Res, 2018,32(8):1647-1650. [16] Gao C, Zhang H, Guo Z, et al. Mechanistic studies on the absorption and disposition of scutellarin in humans: selective OATP2B1-mediated hepatic uptake is a likely key determinant for its unique pharmacokinetic characteristics[J].Drug Metab Dispos, 2012,40(10):2009-2020. [17] 孔令花.UGTs与OATP对黄酮类化合物的代谢与转运研究[D].苏州大学,2018. [18] 智慧.不同糖基侧链的黄酮苷与OATP1B1转运体的相互作用研究[D].苏州大学,2019. [19] Kaci H, Bakos É, Needs PW, et al. The 2-aminoethyl diphenylborinate-based fluorescent method identifies quercetin and luteolin metabolites as substrates of organic anion transporting polypeptides, OATP1B1 and OATP2B1[J].Eur J Pharm Sci, 2024,196:106740. [20] 苏莹.OAT转运体介导的奥司他韦与黄酮类化合物的相互作用研究[D].苏州大学,2022. [21] Uwai Y, Motohashi H, Tsuji Y, et al. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3[J].Biochem Pharmacol, 2007,74(1):161-168. [22] Han YH, Busler D, Hong Y, et al. Transporter studies with the 3-O-sulfate conjugate of 17alpha-ethinylestradiol: assessment of human kidney drug transporters[J].Drug Metab Dispos, 2010,38(7):1064-1071. [23] Wong CC, Botting NP, Orfila C, et al. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6)[J].Biochem Pharmacol, 2011,81(7):942-949. [24] Wang M, Qi H, Li J, et al. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds[J].Food Chem Toxicol, 2015,86:217-224. [25] Zhou X, Zhang F, Chen C, et al. Impact of curcumin on the pharmacokinetics of rosuvastatin in rats and dogs based on the conjugated metabolites[J].Xenobiotica, 2017,47(3):267-275. [26] Patel M, Eberl HC, Wolf A, et al. Mechanistic basis of cabotegravir-glucuronide disposition in humans[J].J Pharmacol Exp Ther, 2019,370(2):269-277. [27] Li Y, Lu L, Wang L, et al. Interplay of efflux transporters with glucuronidation and its impact on subcellular aglycone and glucuronide disposition: a case study with kaempferol[J].Mol Pharm, 2018,15(12):5602-5614. [28] 郑亮.Ⅱ相代谢酶与外排转运蛋白在山奈酚体内暴露中的调控作用及机制[D].南方医科大学,2016. [29] 喻佳.磺酸化转移酶和外排转运蛋白在调控毛蕊异黄酮肠道处置中的作用及机制[D].广州中医药大学,2017. [30] 石剑.黄芪中异黄酮成分的药代动力学特征及肝肠处置机制研究[D].南方医科大学,2016. [31] 李烨.木犀草素、荭草苷和异荭草苷的UGT代谢机理及BCRP外排转运蛋白调控其代谢的机制研究[D].南方医科大学,2013. [32] Li S, Xu J, Yao Z, et al. The roles of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated proteins (MRPs/ABCCs) in the excretion of cycloicaritin-3-O-glucoronide in UGT1A1-overexpressing HeLa cells[J].Chem Biol Interact, 2018,296:45-56. [33] Qi C, Fu J, Zhao H, et al. Identification of UGTs and BCRP as potential pharmacokinetic determinants of the natural flavonoid alpinetin[J].Xenobiotica, 2019,49(3):276-283. [34] Scambia G, Ranelletti FO, Panici PB, et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target[J].Cancer Chemother Pharmacol, 1994,34(6):459-464. [35] Li W, Sun H, Zhang X, et al. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4)[J].Biochem Pharmacol, 2015,98(1):203-214. [36] Ge S, Gao S, Yin T, et al. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method[J].J Agric Food Chem, 2015,63(11):2902-2910. [37] Miranda SR, Lee JK, Brouwer KL, et al. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: role of multidrug resistance-associated protein 2 (Abcc2)[J].Drug Metab Dispos, 2008,36(11):2219-2226. [38] Maeno K, Nakajima A, Conseil G, et al. Molecular basis for reduced estrone sulfate transport and altered modulator sensitivity of transmembrane helix (TM) 6 and TM17 mutants of multidrug resistance protein 1 (ABCC1)[J].Drug Metab Dispos, 2009,37(7):1411-1420. [39] Wang Q, Shi R, Dai Y, et al. Mechanism in the existent difference in form of wogonin/wogonoside between plasma and intestine/liver in rats[J].RSC Adv, 2018,8(7):3364-3373. [40] Li D, Chen L, Li Y, et al. ADMET evaluation in drug discovery. 13. development of in silico prediction models for P-glycoprotein substrates[J].Mol Pharm, 2014,11(3):716-726. [41] Deng F, Ghemtio L, Grazhdankin E, et al. Binding site interactions of modulators of breast cancer resistance protein, multidrug resistance-associated protein 2, and P-glycoprotein activity[J].Mol Pharm, 2020,17(7):2398-2410. [42] Cao J, Chen X, Liang J, et al. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of glycyrrhizaglabra[J].Drug Metab Dispos, 2007,35(4):539-553. [43] 范小庆.黄酮类化合物对药物转运体BCRP和OATP1B1的调控及分子机制研究[D].北京协和医学院,2020. [44] Navrátilová L, Ramos Mandíková J, Pávek P, et al. Honey flavonoids inhibit hOATP2B1 and hOATP1A2 transporters and hOATP-mediated rosuvastatin cell uptake in vitro [J].Xenobiotica, 2018,48(7):745-755. [45] Xu F, Li Z, Zheng J, et al. The inhibitory effects of the bioactive components isolated from Scutellaria baicalensis on the cellular uptake mediated by the essential solute carrier transporters[J].J Pharm Sci, 2013,102(11):4205-4211. [46] Mohos V, Fliszár-Nyúl E, Ungvári O, et al. Effects of chrysin and its major conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide on cytochrome P450 enzymes and on OATP, P-gp, BCRP, and MRP2 transporters[J].Drug Metab Dispos, 2020,48(10):1064-1073. [47] Kalapos-Kovács B, Magda B, Jani M, et al. Multiple ABC transporters efflux baicalin[J].Phytother Res, 2015,29(12):1987-1990. [48] Wen F, Shi M, Bian J, et al. Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake[J].Pharm Biol, 2016,54(2):293-302. [49] Iijima R, Watanabe T, Ishiuchi K, et al. Interactions between crude drug extracts used in Japanese traditional Kampo medicines and organic anion-transporting polypeptide 2B1[J].J Ethnopharmacol, 2018,214:153-159. [50] 凌霄,陈玉欢,王盼盼,等.代谢酶和转运体介导的药食同源中药中黄酮类成分对其他药物的影响[J].中国药房,2021,32(18):2287-2293. [51] Wang X, Wolkoff AW, Morris ME. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators[J].Drug Metab Dispos, 2005,33(11):1666-1672. [52] Wu LX, Guo CX, Qu Q, et al. Effects of natural products on the function of human organic anion transporting polypeptide 1B1[J].Xenobiotica, 2012,42(4):339-348. [53] 胡帆,袁洪,黄志军,等.水飞蓟素的药动学及药物相互作用[J].中国新药与临床杂志,2009,28(12):881-885. [54] Ma L, Zhao L, Hu H, et al. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug-drug interaction in rats[J].J Ethnopharmacol, 2014,153(3):864-871. [55] Yoshikawa M, Ikegami Y, Sano K, et al. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid[J].J Exp Ther Oncol, 2004,4(1):25-35. [56] van Zanden JJ, van der Woude H, Vaessen J, et al. The effect of quercetin phase Ⅱ metabolism on its MRP1 and MRP2 inhibiting potential[J].Biochem Pharmacol, 2007,74(2):345-351. [57] Mitsunaga Y, Takanaga H, Matsuo H, et al. Effect of bioflavonoids on vincristine transport across blood-brain barrier[J].Eur J Pharmacol, 2000,395(3):193-201. [58] Imai Y, Tsukahara S, Asada S, et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance[J].Cancer Res,2004,64(12):4346-4352. [59] Brand W, Oosterhuis B, Krajcsi P, et al. Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells[J].Biopharm Drug Dispos, 2011,32(9):530-535. [60] Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport[J].Mol Pharmacol, 2004,65(5):1208-1216. [61] Morris ME, Zhang S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters[J].Life Sci, 2006,78(18):2116-2130. [62] Tran VH, Marks D, Duke RK, et al. Modulation of P-glycoprotein-mediated anticancer drug accumulation, cytotoxicity, and ATPase activity by flavonoid interactions[J].Nutr Cancer, 2011,63(3):435-443. [63] Cui J, Liu X, Chow LMC. Flavonoids as P-gp inhibitors: a systematic review of SARs[J].Curr Med Chem, 2019,26(25):4799-4831. [64] Kitagawa S, Nabekura T, Takahashi T, et al. Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells[J].Biol Pharm Bull, 2005,28(12):2274-2278. [65] Pick A, Müller H, Mayer R, et al. Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP)[J].Bioorg Med Chem, 2011,19(6):2090-2102. [66] Dai JY, Yang JL, Li C. Transport and metabolism of flavonoids from Chinese herbal remedy Xiaochaihu- tang across human intestinal Caco-2 cell monolayers[J].Acta Pharmacol Sin, 2008,29(9):1086-1093. [67] van Zanden JJ, Wortelboer HM, Bijlsma S, et al. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2[J].Biochem Pharmacol, 2005,69(4):699-708. [68] 杨世磊,刘克辛.药物转运体介导的中药及单体药物相互作用的研究进展[J].药物评价研究,2019,42(1):194-203. [69] Cummins CL, Salphati L, Reid MJ, et al. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model[J].J Pharmacol Exp Ther, 2003,305(1):306-314. [70] Wang S, Xing H, Zhao M, et al. Recent advances in understanding of kinetic interplay between phase II metabolism and efflux transport[J].Curr Drug Metab, 2016,17(10):922-929. [71] Liu Y, Luo X, Yang C, et al. Impact of quercetin‑induced changes in drug‑metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats[J].Mol Med Rep, 2016,14(4):3073-3085. [72] Yang T, Liu Y, Huang X, et al. Quercetin‑3‑O‑β‑D‑glucoside decreases the bioavailability of cyclosporin A through regulation of drug metabolizing enzymes, transporters and nuclear receptors in rats[J].Mol Med Rep, 2018,18(3):2599-2612. [73] Wang L, Sun R, Zhang Q, et al. An update on polyphenol disposition via coupled metabolic pathways[J].Expert Opin Drug Metab Toxicol, 2019,15(2):151-165. [74] Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase Ⅱ metabolic pathways[J].RSC Adv, 2012,2(21):7948-7963. [75] Wu B. Pharmacokinetic interplay of phase Ⅱ metabolism and transport: a theoretical study[J].J Pharm Sci, 2012,101(1):381-393. [76] Wei Y, Wu B, Jiang W, et al. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells[J].Mol Pharm, 2013,10(5):1736-1750. [77] Wang M, Yang G, He Y, et al. Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway[J].Mol Nutr Food Res, 2016,60(9):1967-1983. [78] Quan E, Wang H, Dong D, et al. Characterization of chrysin glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide[J].Drug Metab Dispos, 2015,43(4):433-443. [79] Ge S, Tu Y, Hu M. Challenges and opportunities with predicting in vivo phase II metabolism via glucuronidation from in vitro data[J].Curr Pharmacol Rep, 2016,2(6):326-338. [80] Zheng L, Zhu L, Zhao M, et al. In vivo exposure of kaempferol is driven by phase Ⅱ metabolic enzymes and efflux transporters[J].AAPS J, 2016,18(5):1289-1299. [81] Zhang X, Dong D, Wang H, et al. Stable knock-down of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay[J].Mol Pharm, 2015,12(4):1268-1278. [82] Qin Z, Li S, Yao Z, et al. Chemical inhibition and stable knock-down of efflux transporters leads to reduced glucuronidation of wushanicaritin in UGT1A1-overexpressing HeLa cells: the role of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in the excretion of glucuronides[J].Food Funct, 2018,9(3):1410-1423. [83] Yang Z, Zhu W, Gao S, et al. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase Ⅱ metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein[J].Drug Metab Dispos, 2012,40(10):1883-1893. [84] Jiang H, Yu J, Zheng H, et al. Breast cancer resistance protein and multidrug resistance protein 2 regulate the disposition of acacetin glucuronides[J].Pharm Res, 2017,34(7):1402-1415. [85] Burt HJ, Riedmaier AE, Harwood MD, et al. Abundance of hepatic transporters in caucasians: a meta-analysis[J].Drug Metab Dispos, 2016,44(10):1550-1561. [86] Kurzawski M, Szeląg-Pieniek S, Łapczuk-Romańska J, et al. The reference liver - ABC and SLC drug transporters in healthy donor and metastatic livers[J].Pharmacol Rep, 2019,71(4):738-745. [87] Vildhede A, Kimoto E, Pelis RM, et al. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease[J].Clin Pharmacol Ther, 2020,107(5):1128-1137. [88] Drozdzik M, Szelag-Pieniek S, Post M, et al. Protein abundance of hepatic drug transporters in patients with different forms of liver damage[J].Clin Pharmacol Ther, 2020,107(5):1138-1148. [89] Zhang Y, Han YH, Putluru SP, et al. Diclofenac and its acyl glucuronide: determination of in vivo exposure in human subjects and characterization as human drug transporter substrates in vitro[J].Drug Metab Dispos, 2016,44(3):320-328. [90] Chang SY, Weber EJ, Sidorenko VS, et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity[J].JCI Insight, 2017,2(22):e95978. [91] 戴佩旻.UGT酶与外排转运蛋白在田蓟苷与刺槐素的肠道循环处置中的作用及机制[D].南方医科大学,2015. [92] Iusuf D, van de Steeg E, Schinkel AH. Hepatocyte hopping of OATP1B substrates contributes to efficient hepatic detoxification[J].Clin Pharmacol Ther, 2012,92(5):559-562. [93] Sticova E, Jirsa M. New insights in bilirubin metabolism and their clinical implications[J].World J Gastroenterol, 2013,19(38):6398-6407. |
[1] | 王旭. 脑胶质瘤患者围术期血清HMGB1、MMP-9水平变化及其与术后颅内感染的关系探究 [J]. 中国医药导刊, 2024, 26(9): 863-867. |
[2] | 吴倩倩, 龚桂姿a, 李春梅, 滕慧, 蒯颖, 苏湘, 龙年b. 数字疗法在慢性阻塞性肺疾病患者自我管理中的研究进展 [J]. 中国医药导刊, 2024, 26(9): 868-873. |
[3] | 赵乔琳, 韩暄, 顾任钧. 中药黄芪在皮肤病治疗中的应用 [J]. 中国医药导刊, 2024, 26(9): 874-882. |
[4] | 熊伟, 程凌, 李文文, 叶晓波, 韦玲芝. 基于R软件的某中医院治疗骨折延迟愈合中药方剂数据挖掘 [J]. 中国医药导刊, 2024, 26(9): 909-916. |
[5] | 晋从巧, 钱琛玥, 龚赟, 刘华东. 青年急性心肌梗死发病非传统危险因素的研究 [J]. 中国医药导刊, 2024, 26(8): 764-773. |
[6] | 肖连立, 徐晓娟, 李德宝, 侯瑾, 张平, 刘福龙. 山东省已上市生物制品备案变更的典型问题和风险分析 [J]. 中国医药导刊, 2024, 26(8): 785-789. |
[7] | 姜歆蕾, 宋戎. 结核丸辅助常规四联抗结核治疗继发肺结核的疗效观察 [J]. 中国医药导刊, 2024, 26(8): 804-807. |
[8] | 刘珊, 汤智敏, 龙沁, 李莎莎, 刘鹏, 罗长青. 2型糖尿病合并肥胖患者经格列美脲治疗并发MACE的影响因素分析 [J]. 中国医药导刊, 2024, 26(8): 814-819. |
[9] | 唐竹, 刘勤, 缪锦辉, 丛薇, 方东来, 马馥娟, 李劲. 远程监管在药品监管和企业管理的作用与实践 [J]. 中国医药导刊, 2024, 26(7): 643-649. |
[10] | 简秋瑜, 杨宇, 和云昱, 高元元, 殷园园. 2019—2023年国家药监局通告微生物不合格化妆品问题分析 [J]. 中国医药导刊, 2024, 26(7): 660-665. |
[11] | 张宁勃, 魏轼梁, 任荣荣, 张维辉, 吕月潇, 王跞. 针药分期论治肝肾不足型智力发育障碍的临床疗效观察 [J]. 中国医药导刊, 2024, 26(7): 671-675. |
[12] | 张培, 李飞. 叶下珠有效成分提纯工艺和质量控制研究进展 [J]. 中国医药导刊, 2024, 26(4): 378-383. |
[13] | 李旭辉. 右美托咪定复合瑞芬太尼麻醉在老年腹部手术中的麻醉效果及对术后认知功能障碍的影响 [J]. 中国医药导刊, 2024, 26(4): 412-416. |
[14] | 戚鹏飞, 王月玲, 邵长春, 李洁, 张晓萍, 季申, 朱仁愿. 基于ICP-MS/MS测定中药白扁豆中18种无机元素及其质量评价 [J]. 中国医药导刊, 2024, 26(3): 248-253. |
[15] | 赵晋江, 郭伟, 梁少华, 程杰. 敲低TROAP基因对胆管癌细胞系增殖和迁移能力的影响 [J]. 中国医药导刊, 2024, 26(3): 285-290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||